Environmental Earth Sciences

, Volume 71, Issue 1, pp 67–76 | Cite as

Groundwater–wetlands interaction in coastal lagoon of Almería (SE Spain)

  • Francisco Sánchez-MartosEmail author
  • Luis Molina-Sánchez
  • Juan Gisbert-Gallego
Special Issue


Water resources management in coastal wetlands requires the degree of interdependence between groundwater and terrestrial ecosystems to be known. This is especially so in semiarid areas where surface inflows are restricted, marine influence is marked and the evaporation rate is high. Thus, chemistry of surface waters is very variable in the Cerrillos-Punta Entinas wetlands system. Using classical hydrogeochemical tools, the main processes that favor a diversity of water types were described, related to: presence of salt deposits on the lagoon beds, marine origin of the water, and local influence of groundwater. All these factors make it difficult to establish what reference conditions should be used to define “good” water quality of the surface waters—as required by the Water framework directive—and to understand the influence of groundwater on these coastal wetlands. Knowledge about the influence of the different interaction of these factors on the hydrogeochemical dynamics is required for the sustainable management of this protected natural site.


Coastal wetlands Brines Groundwater-dependent ecosystems Groundwater–surface water interaction 



The authors are grateful to Mariano Paracuellos (Empresa de Gestión Medio Ambiental, SA) for providing data about the wetlands and would also like to thank the referees for their revisions and suggestions to improve this manuscript.


  1. Baena J, Voermans F (1983) Mapa Geológico Hoja no 1044 1:50000 Roquetas de Mar (Almería). Spanish Geological Survey (IGME), MadridGoogle Scholar
  2. Brunner P, Simmonsa CT, Cookb PG (2009) Spatial and temporal aspects of the transition from connection to disconnection between rivers, lakes and groundwater. J Hydrol 376(1–2):159–169CrossRefGoogle Scholar
  3. (2009) In: Bruthans J, Kovar K, Nachtnebel P (eds) HydroEco 2009. In: Proceedings 2nd International Multidisciplinary Conference on hydrology and ecology: ecosystems interfacing with groundwater and surface water, ViennaGoogle Scholar
  4. Carol SE, Kruse EE, Pousa JL (2010) Eco-hydrological role of deep aquifers in the Salado sedimentary basin in the rovince of Buenos Aires, Argentina. Environ Earth Sci 60:749–756CrossRefGoogle Scholar
  5. Cartwright I, Hall S, Sarah T, Marc L (2009) Geochemical and isotopic constraints on the interaction between saline lakes and groundwater in southeast Australia. Hydrogeol J 17:1991–2004CrossRefGoogle Scholar
  6. Dahl MB, Nilsson JH, Langhoff, Refsgaard JC (2007) Review of classification systems and new multi-scale typology of groundwater-surface water interaction. J Hydrol 344:1–16CrossRefGoogle Scholar
  7. Davis SN, Whittemore DO, Fabryka Martin J (1998) Uses of Chloride/Bromide ratios in studies of potable water. Ground Water 36:338–350CrossRefGoogle Scholar
  8. Djabri L, Rouabhia A, Hani A, Lamouroux Ch, Pulido-Bosch A (2008) Origin of water salinity in a lake and coastal aquifer system. Environ Geol 54:565–573CrossRefGoogle Scholar
  9. Dronkert H (1985) Evaporite models and sedimentology of Messinian and recent evaporites. GUA papers of geology Series 1 24:30–48Google Scholar
  10. Goy JL, Zazo C (1980) Synthesis of the Quaternary in the Almería littoral: neotectonic activity and its morphologic features, Western Betics. Tectonophysics 130:259–270CrossRefGoogle Scholar
  11. Goy JL, Zazo C, Dabrio CJ (2003) A beach-ridge progradation complex reflecting periodical sea-level and climate variability during the Holocene (Gulf of Almería, Western Mediterranean). Geomorphol 50:251–268CrossRefGoogle Scholar
  12. Hancock P, Hunt RJ, Boulton A (eds) (2009) Hydrogeoecology and groundwater dependent ecosystems. Hydrogeol J 17(1)Google Scholar
  13. IS WFD-C (2003) The role of wetlands in the water framework directive. Directorate General Environment of the European Commission, BrusselsGoogle Scholar
  14. Jolly ID, McEwan KL, Holland KL (2008) A review of groundwater–surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology. Ecohydrol 1:43–58CrossRefGoogle Scholar
  15. Junta de Andalucia (2002) Plan Andaluz de Humedales. Sevilla, p 253Google Scholar
  16. Kohfahl C, Rodriguez M, Fenk C, Menz C, Benavente J, Hubberten H, Hanno Meyer H, Paul L, Knappea A, Lopez-Geta JA, Pekdeger A (2008) Characterising flow regime and interrelation between surface-water and ground-water in the Fuente de Piedra salt lake basin by means of stable isotopes, hydrogeochemical and hydraulic data. J Hydrol 351:170–187CrossRefGoogle Scholar
  17. Molina L (1998) Hidroquímica e intrusión marina en el Campo de Dalías (Almería). PhD thesis, University of GranadaGoogle Scholar
  18. Molina Sánchez L, Sánchez Martos F (1996) Estudio hidrogeoquímico de las salinas de Cerrillos. Paraje Natural Punta Entinas-Sabinar (Almería). Informe Inédito. Junta de AndaluciaGoogle Scholar
  19. Petrides B, Cartwright I, Weaver TR (2006) The evolution of groundwater in the Tyrrell catchment, south-central Murray Basin, Victoria, Australia. Hydrogeol J 4:1522–1543CrossRefGoogle Scholar
  20. Ribeiro L, Chambel A, Condesso de Melo MT (eds) (2007) XXXV IAH Congress International association of hydrogeologists “groundwater and ecosystems”, LisbonGoogle Scholar
  21. Richter BC, Kreitler CW (1993) Geochemical techniques for identifying sources for groundwater salinization. CRC press Inc, Boca RatónGoogle Scholar
  22. Risacher F, Alonso H, Salazar C (2003) The origin of brines and salts in Chilean salars: a hydrochemical review. Earth Sci Rev 63:249–293CrossRefGoogle Scholar
  23. Rodríguez-Rodríguez M, Moral F, Benavente J (2007) Hydro-morphological characteristics and hydrogeological functioning of a wetland system: a case study in southern Spain. Environ Geol 52(7):1375–1386CrossRefGoogle Scholar
  24. Sánchez Martos F, Molina Sánchez L, Gisbert J (2007) Hydrogeochemical characterisation of coastal wetlands in the Campo de Dalías (SE Spain) and implementation of the Water Framework Directive. In: Ribeiro et al. (ed) Proceedings XXXV IAH Congress IAH “Groundwater and Ecosystems”, LisbonGoogle Scholar
  25. Schot P, Winter T (2006) Groundwater–surface water interactions in wetlands for integrated water resources management. J Hydrol 320(3–4):261–263CrossRefGoogle Scholar
  26. Sophocleous MA (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67CrossRefGoogle Scholar
  27. Stei ED, Mattson M, Fetscher AE, Halama KJ (2004) Influence of geologic setting on slope wetland hydrodynamics. Wetlands 24(2):244–260CrossRefGoogle Scholar
  28. Tomlinson M, Boulton A (2010) Ecology and management of subsurface groundwater dependent ecosystems in Australia. Mar Freshw Res 61(8):936–949CrossRefGoogle Scholar
  29. van der Kamp G, Masaki (2009) Groundwater-wetland ecosystem interaction in the semiarid glaciated plains of North America. Hydrogeol J 17:203–214CrossRefGoogle Scholar
  30. Vengosh A, Pankratov I (1998) Chloride/bromide and chloride/fluoride ratios of domestic sewage effluents and associated contaminated ground water. Ground Water 36:815–824CrossRefGoogle Scholar
  31. Winter TC, Llamas MR (1993) Hydrogeology of wetlands. J. Hydrol Special 141(1–4):1–271Google Scholar
  32. Zuber A, Kania J, Kmiecik E (eds) (2010) Extended Abstracts XXXVIII IAH Congress, Groundwater Quality Sustainability. University of Silesia Press, KrakowGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Francisco Sánchez-Martos
    • 1
    Email author
  • Luis Molina-Sánchez
    • 1
  • Juan Gisbert-Gallego
    • 1
  1. 1.G.I. Recursos Hídricos y Geología AmbientalUniversity of AlmeríaAlmeríaSpain

Personalised recommendations