Skip to main content

Advertisement

Log in

Approaching water management at watershed scale using distributed water balances in the Yanuncay River basins (Ecuador)

  • Special Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In this study, the excess water generated during a 10-year period (1998–2008) in the upper and middle Yanuncay River basins is estimated. The distributed water balance method, which analyses the interaction between all the different parameters that form part of the water cycle in nature, was developed. To create the model, basic parameters such as rainfall, temperature, soil type and surface cover are required. Moreover, by using computer software such as Microsoft Office Excel and geographic information systems, it is possible to obtain monthly data showing the water excess and generate thematic maps which allow for an effective monitoring of the behaviour of the middle and upper Yanuncay River basins. This study takes the spatial variability of the various factors that influence the behaviour of a basin into account. This allows determining zones with greater water excess, which are areas that would need to be protected. The model can easily incorporate new data such as land use and surface cover (based on time frames) which would facilitate the comparison of different scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alley WM (1984) On the treatment of evapotranspiration, soil moisture accounting, and aquifer recharge in monthly water balance models. Water Resour Res 20:1137–1149. doi:10.1029/WR020i008p01137

    Article  Google Scholar 

  • Cliburn DC, Feddema JJ, Miller JR, Slocum TA (2002) Design and evaluation of a decision support system in a water balance application. Comput Graph 26:931–949. doi:10.1016/S0097-8493(02)00181-4

    Article  Google Scholar 

  • Fontes MPF, Fontes RMO, Carneiro PAS (2009) Land suitability, water balance and agricultural technology as a geographic–technological index to support regional planning and economic studies. Land Use Policy 26:589–598. doi:10.1016/j.landusepol.2008.08.010

    Article  Google Scholar 

  • Legesse D, Vallet-Coulomba C, Gassea F (2003) Hydrological response of a catchment to climate and land use changes in Tropical Africa: case study South Central Ethiopia. J Hydrol 275:67–85. doi:10.1016/S0022-1694(03)00019-2

    Article  Google Scholar 

  • Mather JR (1981) Using computed stream flow in watersheds analysis. Water Resour Res 17:474–482. doi:10.1111/j.1752-1688.1981.tb01243.x

    Google Scholar 

  • Mattikalli NM, Devereux BJ, Richards BJ (1996) Prediction of river discharge and surface water quality using an integrated geographical information system approach. Int J Remote Sens 17:683–701. doi:10.1080/01431169608949038

    Article  Google Scholar 

  • Mintz Y, Serafini YV (1992) A global monthly climatology of soil moisture and water balance. Clim Dyn 8:13–27. doi:10.1007/BF00209340

    Article  Google Scholar 

  • Palmer WC (1965) Meteorologic drought, Research Paper No 45. US Weather Bureau, Washington

    Google Scholar 

  • Pascual Aguilar JA (2002a) Cambios de suelo y régimen hídrico en la rambla de Poyo y el Barranc de Carraixet. Dissertation, Universidad de Valencia

  • Pascual Aguilar JA (2002b) Modelling the impact of land cover changes on the soil water regime. In: Rubio JL, Morgan RPC, Asins S, Andreu V (eds) Man and soil at the third millennium. Geoforma Ediciones, Logroño, pp 423–433

    Google Scholar 

  • Spanish Hydrology Institute/Unesco (1981) Métodos de cálculo de balance hídrico-Guía internacional de investigación y métodos. Servicio de Edición del Centro de Estudios Hidrográficos de España, Madrid

    Google Scholar 

  • Thomas HA, Marin CM, Brown MJ, Fiering MB (1983) Methodology for water resource assessment, report to US. Geological survey. Rep. NT1S 84-124163. National Technical Information Service, Springfield

    Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  • Thornthwaite CW, Mather JR (1955) The water balance. Climatol Lab Climatol Drexel Inst Technol 8:1–104

    Google Scholar 

  • Van Deursen WPA, Kwadijk JCJ (1993) RHINEFLOW: an integrated GIS water balance model for the river Rhine. In: Kovar K, Nachtnebel HP (eds) Application of geographic information systems in hydrology and water resources management. IAHS, Wallingford, pp 507–518

    Google Scholar 

  • Vandewiele GL, Atlabachew E (1995) Monthly water balance of ungauged catchments obtained by geographical regionalization. J Hydrol 170:277–291. doi:10.1016/0022-1694(95)02681-E

    Article  Google Scholar 

  • Xu CY, Singh VP (2004) A Review on monthly water balance models for water resources investigations. Water Resour Manage 12:31–50. doi:10.1023/A:1007916816469

    Google Scholar 

  • Yao H, Hashino M (2000) Analysis on spatial distribution of annual water budget and daily runoff along river network in a basin. Annu J Hydraul Eng 44:289–294

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Antonio Pascual Aguilar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Córdova, J.F., Pascual Aguilar, J.A. Approaching water management at watershed scale using distributed water balances in the Yanuncay River basins (Ecuador). Environ Earth Sci 71, 53–60 (2014). https://doi.org/10.1007/s12665-013-2693-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2693-4

Keywords

Navigation