Environmental Earth Sciences

, Volume 71, Issue 1, pp 53–60 | Cite as

Approaching water management at watershed scale using distributed water balances in the Yanuncay River basins (Ecuador)

  • Javier Fernández de Córdova
  • Juan Antonio Pascual AguilarEmail author
Special Issue


In this study, the excess water generated during a 10-year period (1998–2008) in the upper and middle Yanuncay River basins is estimated. The distributed water balance method, which analyses the interaction between all the different parameters that form part of the water cycle in nature, was developed. To create the model, basic parameters such as rainfall, temperature, soil type and surface cover are required. Moreover, by using computer software such as Microsoft Office Excel and geographic information systems, it is possible to obtain monthly data showing the water excess and generate thematic maps which allow for an effective monitoring of the behaviour of the middle and upper Yanuncay River basins. This study takes the spatial variability of the various factors that influence the behaviour of a basin into account. This allows determining zones with greater water excess, which are areas that would need to be protected. The model can easily incorporate new data such as land use and surface cover (based on time frames) which would facilitate the comparison of different scenarios.


Water excess Geographical information systems Water balance Water management Yanuncay River basin 


  1. Alley WM (1984) On the treatment of evapotranspiration, soil moisture accounting, and aquifer recharge in monthly water balance models. Water Resour Res 20:1137–1149. doi: 10.1029/WR020i008p01137 CrossRefGoogle Scholar
  2. Cliburn DC, Feddema JJ, Miller JR, Slocum TA (2002) Design and evaluation of a decision support system in a water balance application. Comput Graph 26:931–949. doi: 10.1016/S0097-8493(02)00181-4 CrossRefGoogle Scholar
  3. Fontes MPF, Fontes RMO, Carneiro PAS (2009) Land suitability, water balance and agricultural technology as a geographic–technological index to support regional planning and economic studies. Land Use Policy 26:589–598. doi: 10.1016/j.landusepol.2008.08.010 CrossRefGoogle Scholar
  4. Legesse D, Vallet-Coulomba C, Gassea F (2003) Hydrological response of a catchment to climate and land use changes in Tropical Africa: case study South Central Ethiopia. J Hydrol 275:67–85. doi: 10.1016/S0022-1694(03)00019-2 CrossRefGoogle Scholar
  5. Mather JR (1981) Using computed stream flow in watersheds analysis. Water Resour Res 17:474–482. doi: 10.1111/j.1752-1688.1981.tb01243.x Google Scholar
  6. Mattikalli NM, Devereux BJ, Richards BJ (1996) Prediction of river discharge and surface water quality using an integrated geographical information system approach. Int J Remote Sens 17:683–701. doi: 10.1080/01431169608949038 CrossRefGoogle Scholar
  7. Mintz Y, Serafini YV (1992) A global monthly climatology of soil moisture and water balance. Clim Dyn 8:13–27. doi: 10.1007/BF00209340 CrossRefGoogle Scholar
  8. Palmer WC (1965) Meteorologic drought, Research Paper No 45. US Weather Bureau, WashingtonGoogle Scholar
  9. Pascual Aguilar JA (2002a) Cambios de suelo y régimen hídrico en la rambla de Poyo y el Barranc de Carraixet. Dissertation, Universidad de ValenciaGoogle Scholar
  10. Pascual Aguilar JA (2002b) Modelling the impact of land cover changes on the soil water regime. In: Rubio JL, Morgan RPC, Asins S, Andreu V (eds) Man and soil at the third millennium. Geoforma Ediciones, Logroño, pp 423–433Google Scholar
  11. Spanish Hydrology Institute/Unesco (1981) Métodos de cálculo de balance hídrico-Guía internacional de investigación y métodos. Servicio de Edición del Centro de Estudios Hidrográficos de España, MadridGoogle Scholar
  12. Thomas HA, Marin CM, Brown MJ, Fiering MB (1983) Methodology for water resource assessment, report to US. Geological survey. Rep. NT1S 84-124163. National Technical Information Service, SpringfieldGoogle Scholar
  13. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94CrossRefGoogle Scholar
  14. Thornthwaite CW, Mather JR (1955) The water balance. Climatol Lab Climatol Drexel Inst Technol 8:1–104Google Scholar
  15. Van Deursen WPA, Kwadijk JCJ (1993) RHINEFLOW: an integrated GIS water balance model for the river Rhine. In: Kovar K, Nachtnebel HP (eds) Application of geographic information systems in hydrology and water resources management. IAHS, Wallingford, pp 507–518Google Scholar
  16. Vandewiele GL, Atlabachew E (1995) Monthly water balance of ungauged catchments obtained by geographical regionalization. J Hydrol 170:277–291. doi: 10.1016/0022-1694(95)02681-E CrossRefGoogle Scholar
  17. Xu CY, Singh VP (2004) A Review on monthly water balance models for water resources investigations. Water Resour Manage 12:31–50. doi: 10.1023/A:1007916816469 Google Scholar
  18. Yao H, Hashino M (2000) Analysis on spatial distribution of annual water budget and daily runoff along river network in a basin. Annu J Hydraul Eng 44:289–294CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Javier Fernández de Córdova
    • 1
  • Juan Antonio Pascual Aguilar
    • 2
    • 3
    Email author
  1. 1.Empresa Pública Municipal de Telecomunicaciones, Agua Potable, Alcantarillado y Saneamiento de Cuenca, ETAPA EPCuencaEcuador
  2. 2.Instituto Madrileño De Estudios Avanzados-AguaParque Científico Tecnológico de la Universidad de AlcaláAlcalá de Henares, MadridSpain
  3. 3.Centro para el Conocimiento del PaisajeMatetSpain

Personalised recommendations