Advertisement

Environmental Earth Sciences

, Volume 71, Issue 1, pp 23–30 | Cite as

Assessment of groundwater circulation in La Gomera aquifers (Canary Islands, Spain) from their hydrochemical features

  • María LealEmail author
  • Javier Lillo
  • Álvaro Márquez
Special Issue

Abstract

La Gomera (Canary Islands, Spain) does not show water scarcity like other islands of the Archipelago. However, the study of its aquifers is paramount as nearly 60 % of the water supplies are covered with spring water. According to the currently accepted hydrogeological model, La Gomera presents an upper aquifer consisting of perched groundwater bodies. Below this hydrogeological unit, the General Saturated Zone or basal groundwater is placed. The model also establishes the presence of flows through them. Many perched groundwater bodies are located under Garajonay National Park where most of the springs are found. Therefore, if upper and lower aquifers are truly connected and new wells are built, the new extractions could affect Garajonay ecosystems. With the aim of identifying spring groups and related potential areas of water transfer, hydrochemical and statistical analyses (principal component analysis and cluster analysis) have been applied. This study shows the great compositional variability of groundwaters, precluding the identification of spring groups, hydrochemical patterns and, therefore, the transfer areas with no possibility of assessing the potential impact of a water demand increase on the Garajonay National Park ecosystems from the present data. Only the springs belonging to group II of the cluster analysis could indicate a transfer area. The lack of conclusive results could be due to: (1) great compositional variability of volcanic materials; (2) unequal influence of marine aerosols; (3) irregular distribution of rainfall; (4) different grades of soils development; and (5) the occurrence of partially disconnected water bodies giving as a result a complex hydrogeological system.

Keywords

Hydrogeology Hydrochemistry La Gomera Cluster analysis Principal component analysis 

Notes

Acknowledgments

The authors wish to thank the contribution of Tatiana Izquierdo Labraca and Raquel Herrera Espada (Universidad Rey Juan Carlos) and the support of the Postgraduate Program of Hydrology and Water Resource Management (Universidad de Alcalá de Henares and Universidad Rey Juan Carlos). The authors are also grateful to an anonymous reviewer for the comments which have improved the quality of the text.

References

  1. Aiuppa A, Bellomo S, Brusca L, D’Alessandro W, Federico C (2003) Natural and anthropogenic factor affecting groundwater quality of an active volcano (Mt. Etna, Italy). Appl Geochem 18:863–882CrossRefGoogle Scholar
  2. Ancochea E, Hernán F (2004) La construcción de las islas. In: Vera JA (ed) Geología de España: 637-639. Sociedad Geológica Española and Instituto Geológico y Minero de España, Madrid, pp 637–639Google Scholar
  3. Ancochea E, Brändle JL, Cubas JL, Hernán F, Herrera R, Huertas MJ (2004) La Gomera. In: Vera JA (ed) Geología de España. Sociedad Geológica de España and Instituto Geológico y Minero de España, Madrid, pp 658–660Google Scholar
  4. Ancochea E, Hernán F, Huertas MJ, Brändle JL, Herrera R (2006) A new chronostratigraphical and evolutionary model for La Gomera: implications for the overall evolution of the Canarian Archipelago. J Volcanol Geotherm Res 157:271–293CrossRefGoogle Scholar
  5. Bravo T (1964) Estudio geológico y petrográfico de la isla de La Gomera. Stud Geol 20:1–21Google Scholar
  6. Buccianti A, Pawlowsky-Glahn V (2005) New perspectives on water chemistry and compositional data analysis. Math Geol 37:703–727CrossRefGoogle Scholar
  7. Cendrero (1971) Estudio geológico y petrológico del complejo basal de la isla de La Gomera (Canarias). Stud Geol 27:3–73Google Scholar
  8. Cruz JV (2003) Groundwater and volcanoes: examples from the Azores archipelago. Environ Geol 44:343–355CrossRefGoogle Scholar
  9. Cruz JV, Amaral CS (2004) Major ion chemistry of groundwater from perched-water bodies of the Azores (Portugal) volcanic archipelago. Appl Geochem 19:445–459CrossRefGoogle Scholar
  10. Cruz JV, França A (2006) Hydrogeochemistry of thermal and mineral water springs of the Azores archipelago (Portugal). J Volcanol Geotherm Res 151:382–398CrossRefGoogle Scholar
  11. Custodio E (1978) Geohidrología de terrenos e islas volcánicas. Inst. Hidrología—Centro Estudios Hidrográficos, MadridGoogle Scholar
  12. Custódio E (1989) Groundwater characteristics and problems in volcanic rock terrains. In: Isotope techniques in the study of the hydrology of fractured and fissured rocks: proceedings of an advisory group meeting on the application of isotope techniques in the study of the hydrology of fractured and fissured rocks. International Atomic Energy Agency, Vienna, pp 87–137Google Scholar
  13. Custodio E, Cabrera MC (2002) ¿Cómo convivir con la escasez de agua? El caso de las Islas Canarias. Bol Geol Min 113:243–258Google Scholar
  14. Custodio E, Manzano M (1990) Estudio hidroquímico e isotópico ambiental preliminar de la isla de La Gomera. In: Curso Internacional de Hidrología Subterránea. Barcelona, pp 121–162Google Scholar
  15. Davis JC (2002) Statistics and data analysis in geology. Willey, New YorkGoogle Scholar
  16. Everitt BS, Landau S, Leese M (2001) Cluster analysis. Arnold, LondonGoogle Scholar
  17. Fernández E, Monturiol F, Gutiérrez F (1974) Distribución y características de los suelos canarios. III Isla de La Gomera. An Edafol Agrobiol 33:531–543Google Scholar
  18. Fernández-Caldas E, Pérez-García V (1972) Las aguas subterráneas de la Isla de La Gomera. An Edafol Agrobiol 32(3–4):261–277 Google Scholar
  19. Galego Fernandes P, Carreira P, Oliviera da Silva M (2006) Identification of anthropogenic features through application of principal component analysis to hydrochemical data from the Sines Coastal Aquifer, SW Portugal. Math Geol 38:765–780CrossRefGoogle Scholar
  20. Giammanco S, Ottaviani M, Valenza M, Veschetti E, Principio E, Giammanco G, Pignato S (1998) Major and trace elements geochemistry in the ground waters of a volcanic area: Mount Etna (Sicily, Italy). Water Res 32:19–30CrossRefGoogle Scholar
  21. Gobierno de Canarias-Excmo. Cabildo de La Gomera (1996) Avance del Plan Hidrológico de La Gomera. Director: Carlos Soler. Gobierno de Canarias-Excmo. Cabildo de La Gomera (unpublished report)Google Scholar
  22. Güler C, Thyne GD, McCray JE, Turner AK (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J 10:455–474CrossRefGoogle Scholar
  23. Herrera R (2008) Volcanoestratigrafía, composición y evolución de los edificios volcánicos subaéreos de La Gomera. Dissertation, Complutense University of MadridGoogle Scholar
  24. Hiscock K (2005) Hydrogeology principles and practice. Blackwell, CornwallGoogle Scholar
  25. IGME (1993a) Actualización del inventario de nacientes de la Isla de La Gomera. Tomo I. IGME Publishing Web. http://www.igme.es/internet/sidPDF%5C038000%5C195%5CTomo%20I%5C38195_0001.pdf. Accessed May 2009
  26. IGME (1993b) Actualización del inventario de nacientes de la Isla de La Gomera. Tomo II. IGME Publishing Web. http://www.igme.es/internet/sidPDF%5C038000%5C195%5CTomo%20II%5C38195_0002.pdf. Accessed May 2009
  27. Join JL, Coudray J, Longworth K (1997) Using principal component analysis and Na/Cl ratios to trace groundwater circulation in a volcanic island: the example of Reunion. J Hydrol 190:1–18CrossRefGoogle Scholar
  28. Jolliffe ET (2002) Principal component analysis. Springer, New YorkGoogle Scholar
  29. Longley PA, Goodchild MF, Maguire DJ, Rhind DW (2005) Geographic information systems and science. Wiley, EnglandGoogle Scholar
  30. Menció A, Mas-Pla J (2008) Assessment by multivariate analysis of groundwater–surface water interactions in urbanized Mediterranean streams. J Hydrol 352:355–366CrossRefGoogle Scholar
  31. Meng SX, Maynard JB (2001) Use of statistical analysis to formulate conceptual models of geochemical behavior: water chemicals data from the Botucatu aquifer in São Paulo state, Brazil. J Hydrol 250:78–97CrossRefGoogle Scholar
  32. MOPU (1975) Estudio científico de los recursos de agua en las Islas Canarias (SPA/69/515). Dirección General de Obras Hidráulicas. United Nations Program for Development. UNESCO, vol 4. Las Palmas de Gran Canaria, MadridGoogle Scholar
  33. PHIG (2003) Decreto 101/2002, de 26 de julio, por el que se aprueba el Plan Hidrológico Insular de La Gomera. Boletín Oficial del Estado 84:6965–7077Google Scholar
  34. Porras J, Gómez J, Martín G, Lázaro L, Olmedo R, Fernández L, Santana L, Rosa A (1985a) Estudio hidrogeológico general de la Isla de La Gomera. Tomo I: Memoria. Colección Informe. IGME, MadridGoogle Scholar
  35. Porras J, Gómez J, Martín G, Lázaro L, Olmedo R, Fernández L, Santana L, Rosa A (1985b) Estudio hidrogeológico general de la Isla de La Gomera. Tomo II: Mapas. Colección Informe. IGME, MadridGoogle Scholar
  36. Prada SN, da Silva MO, Cruz JV (2005) Groundwater behaviour in Madeira, volcanic island (Portugal). Hydrogeol J 13:800–812CrossRefGoogle Scholar
  37. Richard JA (1998) Applied multivariate statistical analysis, 4th edn. Prentice Hall, New JerseyGoogle Scholar
  38. Soler C (2003) Monográfico ensayos de bombeo del Plan Hidrológico Insular de La Gomera. Consejo Insular de Aguas (unpublished report)Google Scholar
  39. Swanson S, Bahr JM, Schwar MT, Potter KW (2001) Two-way cluster analysis of geochemical data to constrain spring source Waters. Chem Geol 179:73–91CrossRefGoogle Scholar
  40. Yidana SM, Ophori D, Banoeng-Yakubo B (2007) Hydrochemical evaluation of the Voltaian system—The Afram Plains area, Ghana. J Environ Manag 88:697–707CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Biology and GeologyUniversity Rey Juan Carlos, ESCETMóstolesSpain
  2. 2.IMDEA Water FoundationAlcalá de HenaresSpain

Personalised recommendations