Environmental Earth Sciences

, Volume 70, Issue 8, pp 3875–3893 | Cite as

Hydraulic fracturing: a toxicological threat for groundwater and drinking-water?

  • Birgit C. Gordalla
  • Ulrich Ewers
  • Fritz H. Frimmel
Special Issue

Abstract

This paper deals with the possible impact of hydraulic fracturing (fracking), employed in the exploitation of unconventional shale gas and tight gas reservoirs, on groundwater, which is the most important source of drinking-water in Germany and many other European countries. This assessment, which is part of an interdisciplinary study by a panel of neutral experts on the risks and environmental impact of hydraulic fracturing, is based mainly on data obtained from three ExxonMobil drilling sites in northern Germany. First, the basic technical aspects of fracking and its relevant water fluxes are explained. The type, purpose and fate of the constituents of the fracking fluids are discussed. The chemicals used in the fracking fluids are assessed with regard to their hazardous properties according to the Regulation (EC) No. 1272/2008 of the European Parliament and of the Council on the classification, labelling and packaging of substances and mixtures (CLP regulation) and the German “Water Hazard Classes”. Contamination of groundwater by ingredients of fracking fluids may occur from under ground or may result from above-ground accidents associated with the transport, storage and handling of hazardous substances used as additives in fracking fluids. The degree of groundwater contamination cannot be predicted in a general way. Therefore, different dilutions of the fracking fluid in groundwater are considered. It is shown that the concentrations of most ingredients resulting from a 1:10,000 up to 1:100,000 dilution of the fracking fluid in groundwater are below health-based reference values such as the limit values of the European Drinking Water Directive, the WHO Guideline Values for Drinking-water Quality, and other health-based guide values for drinking-water. Regarding the salinity of fracking fluids, a dilution of 1:1,000 is sufficient to reach concentrations which are acceptable for drinking-water. From the human-toxicological point of view, the constituents of flowback water are more problematic with respect to drinking-water produced from groundwater than those of the fracking fluids. The few reliable data which have become available, as well as hydrogeological considerations, point in the direction of considerable salt concentrations and toxic constituents, e.g., Hg, As, Pb, Zn, Cd, BTX, PAHs, or even radioactive elements. The identification and assessment of reaction products and metabolites, which are produced as a result of the fracking operation and the metabolic activity of microorganisms, are important topics for further research. The recommendations include the need for a better understanding of the environmental impact of fracking operations, especially with regard to the development of sustainable rules for planning, permission, performance and management of fracking, and for the monitoring of groundwater quality around fracked drilling sites.

Keywords

Fracking fluid Water balance Water chemistry Flowback Legal aspects Toxicity Assessment Groundwater Drinking-water 

Notes

Acknowledgments

The authors thank Alejandra Lenis Parra and Jörg Mießner for help with the data and the manuscript. Fiona Crowther’s help with language polishing is gratefully acknowledged.

References

  1. Bottero S, Picioreanu C, Enzien M, van Loosdrecht MCM, Bruining H, Heimovaara T (2010) Formation damage and impact on gas flow caused by biofilms growing within proppant packing used in hydraulic fracturing. Paper SPE 128066, from SPE International Symposium on Formation Damage in LafayetteGoogle Scholar
  2. Brandon DM, Fillo JP, Morris AE, Evans JM (1995) Biocide and corrosion inhibition use in the oil and gas industry: effectiveness and potential environmental impacts. Paper SPE29735 presented at the Houston 1995 E&P Environmental ConferenceGoogle Scholar
  3. Dahm KG, Van Straaten CM, Munakata-Marr J, Drewes JE (2013) Identifying well contamination through the use of 3-D fluorescence spectroscopy to classify coalbed methane produced water. Environ Sci Technol 47:649–656. doi: 10.1021/es303866k CrossRefGoogle Scholar
  4. De Groot A, Geier J, Flyvholm MA, Lensen G, Coenraads PJ (2010) Formaldehyde-releasers: relationship to formaldehyde contact allergy. Metalworking fluids and remainder. Part 1. Contact Dermat 63:117–128Google Scholar
  5. Degner DL (2011) Hydraulic fracturing fluid considerations in Marcellus Shale completions. In: Proceedings of the technical workshops for the hydraulic fracturing study: chemical and analytical methods. EPA 600/R-11/066. http://www.epa.gov/hfstudy/chemworkshop.html. Accessed 31 Aug 2012, pp 15–17
  6. Dieter HH (2011) Drinking water toxicology in its regulatory framework. In: Frimmel FH (ed) Aquatic chemistry and microbiology, treatise on water science, Vol. 3 (ed. Wilderer P). Elsevier, Amsterdam, pp 377–415Google Scholar
  7. DVGW (2006) Technische Regel—Arbeitsblatt W 294-1—UV-Geräte zur Desinfektion in der Wasserversorgung; Teil 1: Anforderungen an Beschaffenheit, Funktion und Betrieb (Ultraviolet disinfection equipment for drinking-water treatment. Part 1: requirements for type, performance and operation). DVGW Deutsche Vereinigung des Gas- und Wasserfaches e. V., BonnGoogle Scholar
  8. EC (1980) Council Directive of 15 July 1980 relating to the quality of water intended for human consumption (80/778/EEC). Off J Eur Commun L 229:11–29Google Scholar
  9. EC (1998) Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off J Eur Commun L 330:32–54Google Scholar
  10. EC (2008a) Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006Google Scholar
  11. EC (2008b) Directive 2008/105/EC of the European Parliament and of the Council on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/419/EEC, 86/280/EEC and amending Directive 2000/60/EC. Off J Eur Commun L 348:84–97 (24 December 2008)Google Scholar
  12. EPA (2011a) Proceedings of the technical workshops for the hydraulic fracturing study: well construction and operations. EPA 600/R-11/046. http://www.epa.gov/hfstudy/wellconstructworkshop.html. Accessed 31 Aug 2012
  13. EPA (2011b) Proceedings of the technical workshops for the hydraulic fracturing study: chemical and analytical methods. EPA 600/R-11/066. http://www.epa.gov/hfstudy/chemworkshop.html. Accessed 31 Aug 2012
  14. Ewen C, Borchardt D, Richter S, Hammerbacher R (2012) Hydrofracking risk assessment. Executive summary. Study concerning the safety and environmental compatibility of hydrofracking for natural gas production from unconventional reservoirs. http://dialog-erdgasundfrac.de/sites/dialog-erdgasundfrac.de/files/Ex_HydrofrackingRiskAssessment_120611.pdf. Full-length surveys in German: http://dialog-erdgasundfrac.de/gutachten. Accessed 31 Aug 2012
  15. Ewers U, Frimmel FH, Gordalla B (2012) Humantoxikologische Bewertung der beim Fracking eingesetzten Chemikalien im Hinblick auf das Grundwasser, das für die Trinkwassergewinnung genutzt wird (Human-toxicological assessment of chemicals employed for hydrofracking operations with respect to groundwater to be used for drinking-water production). Survey within the framework of the dialogue and information dissemination process concerning the health and environmental aspects of hydrofracking. http://dialog-erdgasundfrac.de/gutachten. Accessed 31 Aug 2012
  16. Fail PA, Chapin RE, Price CJ, Heindel JJ (1998) General, reproductive, developmental, and endocrine toxicity of boronated compounds. Reprod Toxicol 12:1–18CrossRefGoogle Scholar
  17. GESTIS (2012) GESTIS-Stoffdatenbank—Gefahrstoffinformationssystem der Deutschen Gesetzlichen Unfallversicherung (Data base on hazardous substances of the German statutory accidant insurance). http://www.dguv.de/ifa/de/gestis/stoffdb/index.jsp. Accessed 31 Aug 2012
  18. Gregory KB, Vidic RD, Dzombak DA (2011) Water management challenges associated with the production of shale gas by hydraulic fracturing. Elements 7:181–186. doi: 10.2113/gselements.7.3.181 CrossRefGoogle Scholar
  19. Hahn S et al (2005) Health risks from biocide-containing products and articles of daily use. Action program, environment and health project funding number (UFOPLAN) 204 61 218/05. http://www.apug.de/archiv/pdf/Abschlussbericht_Kurzfassung_Biozide_english.pdf. Accessed 31 Aug 2012
  20. IARC—International Agency for Research on Cancer (1999) IARC monographs on the evaluation of carcinogenic risks to humans 73:481. http://monographs.iarc.fr/ENG/Monographs/vol73/mono73-22.pdf
  21. Jacobson A, Williams T (2000) The environmental fate of isothiazolone biocides. Chimica oggi/Chem Today (October 2000)Google Scholar
  22. Kissinger A, Helmig R, Ebigbo A, Class H, Lange T, Sauter M, Heitfeld M, Klünker J, Jahnke W (2013) Hydraulic fracturing in unconventional reservoirs—risks in the geological system, part 2. Environ Earth Sci. doi: 10.1007/s12665-013-2578-6
  23. Krumholz LR (2000) Microbial communities in the deep subsurface. Hydrogeol J 8:4–10Google Scholar
  24. Länderarbeitsgemeinschaft Wasser—LAWA (2004): Ableitung von Geringfügigkeitsschwellen für das Grundwasser (Deduction of thresholds of low concern for local and limited groundwater contaminations). http://www.lawa.de/documents/GFS-Bericht-DE_a8c.pdf. Accessed 31 Aug 2012
  25. Lange T, Sauter M, Heitfeld M, Schetelig K, Jahnke W, Kissinger A, Helmig R, Ebigbo A, Class H (2013) Hydraulic fracturing in unconventional reservoirs—risks in the geological system, part 1. Environ Earth Sci. doi: 10.1007/s12665
  26. Lechtenböhmer S, Altmann M, Capito S, Matra Z, Weindorf W, Zittel W (2011) Impacts of shale gas and shale oil extraction on the environment and on human health. Study of the European Parliament. http://www.europarl.europa.eu/document/activities/cont/201107/20110715ATT24183/20110715ATT24183EN.pdf. Accessed 31 Aug 2012
  27. McCurdy R (2011) High rate hydraulic fracturing additives in non-Marcellus unconventional shales. In: Proceedings of the technical workshops for the hydraulic fracturing study: chemical and analytical methods. EPA 600/R-11/066. http://www2.epa.gov/hfstudy/high-rate-hydraulic-fracturing-additives-non-marcellus-unconventional-shales. Accessed 8 July 2013
  28. Müller A, Schulz W, Ruck WKL, Weber HW (2011) A new approach to data evaluation in the non-target screening of organic trace substances in water analysis. Chemosphere 85:1211–1219CrossRefGoogle Scholar
  29. Nemati M, Voordouw G (2000) Identification and characterization of sulfate-reducing bacteria involved in microbially influenced corrosion in oil fields. NACE Paper 00126, presented at Corrosion 2000Google Scholar
  30. Olsson O, Weichgrebe D, Rosenwinkel KH (2013) Hydrofracking wastewater in Germany: composition, treatment, concerns. Environ Earth Sci. doi: 10.1007/s12665-013-2535-4
  31. Orem WH, Tatu CA, Lerch HE, Rice CA, Bartos TT, Bates AL, Tewalt S, Corum MD (2007) Organic compounds in produced waters rom coalbed natural gas wells in the Poweder River Basin, Wyoming, USA. Appl Geochem 22:2240–2256. doi: 10.1016/j.apgeochem.2007.04.010 CrossRefGoogle Scholar
  32. Osborn S, Vengosh A, Warner N, Jackson R (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proc Nat Acad Sci 108(20):8172–8176. doi: 10.1073/pnas.1100682108 CrossRefGoogle Scholar
  33. Pees Coleman N (2011) Produced formation water sample results from Shale plays. In: EPA (ed) Proceedings of Technical Workshops for the Hydraulic Fracturing Study: chemical analytical methods. US Environmental Protection Agency. http://www.epa.gov/hfstudy/producedformationwatersampleresultsfromshaleplays.pdf. Accessed 31 Aug 2012
  34. Rafoth A, Gabriel S, Sacher F, Brauch H-J (2007) Analysis of isothiazolinones in environmental waters by gas chromatography-mass spectrometry. J Chromatogr A 1164:74–81CrossRefGoogle Scholar
  35. Riedl J, Rotter S, Faetsch S, Schmitt-Jansen M, Altenburger R (2013) Proposal for applying a component-based mixture approach for ecotoxicological assessment of fracturing fluids. Environ Earth Sci. doi: 10.1007/s12665-013-2320-4
  36. Rimassa SH, Howard P, MacKay B, Blow K, Coffman N (2011) Case study: evaluation of an oxidative biocide during and after a hydraulic fracturing job in the Marcellus Shale. SPE International Symposium on Oilfield Chemistry, Paper SPE 141211. The Woodlands, Texas, USA, 11–13 April 2011Google Scholar
  37. Rogala A, Krzysiek J, Bernaciak M, Hupka J (2013) Non-aqueous fracturing technologies for shale gas recovery. Physicochem Probl Mineral Process 49(1):313–322. doi: 10.5277/ppmp130128 Google Scholar
  38. Rosenwinkel KH, Weichgrebe D, Olsson O (2012) Stand der Technik und fortschrittliche Ansätze in der Entsorgung des Flowback (State of the art and advanced approaches for disposal of flowback). Survey within the framework of the dialogue and information dissemination process concerning the health and environmental aspects of hydrofracking. http://dialog-erdgasundfrac.de/gutachten. Accessed 31 Aug 2012
  39. Rossnagel A, Hentschel A, Polzer A (2012) Rechtliche Rahmenbedingungen der unkonventionellen Erdgasförderung mittels Fracking (Regulatory framework for unconventional exploitation of natural gas by hydraulic fracturing). Survey within the framework of the dialogue and information dissemination process concerning the health and environmental aspects of hydrofracking. http://dialog-erdgasundfrac.de/gutachten. Accessed 31 Aug 2012
  40. Rossnagel A, Hentschel A, Polzer A (2013) Legal contributions to conflict resolution—the legal evaluation of unconventional natural gas extraction by means of fracking in Germany. Environ Earth Sci. doi: 10.1007/s12665
  41. Satya Gupta DV (2011) Unconventional fracturing fluids. In: Proceedings of the technical workshops for the hydraulic fracturing study: chemical and analytical methods. EPA 600/R-11/066. http://www2.epa.gov/sites/production/files/documents/unconventionalfracturingfluids-what-where-why.pdf. Accessed 8 July 2013
  42. Schmitt-Jansen M, Aulhorn S, Faetsch S, Riedl J, Rotter S, Altenburger R (2012) Ökotoxikologische Beurteilung von beim hydraulischen Fracking eingesetzten Chemikalien (Ecotoxicological assessment of chemicals employed for hydraulic fracturing). Survey within the framework of the dialogue and information dissemination process concerning the health and environmental aspects of hydrofracking. http://dialog-erdgasundfrac.de/gutachten. Accessed 31 Aug 2012
  43. Schneble H, Weinem K, Niethammer I (2012) Flächeninanspruchnahme, (oberirdische) Infrastruktur, Betrieb (Footprint, above-ground infrastructure, operation). Survey within the framework of the dialogue and information dissemination process concerning the health and environmental aspects of hydrofracking. http://dialog-erdgasundfrac.de/gutachten. Accessed 31 Aug 2012
  44. Thoma A, Sacher F (2012) Studie zur Bedeutung von Bioziden für die Trinkwasserversorgung (Study on the relevance of biocides for the drinking-water supply). Abschlussbericht zum Forschungsvorhaben W 3/01/09. Veröffentlichungen aus dem DVGW-Technologiezentrum Wasser Karlsruhe, Band 53Google Scholar
  45. TrinkwV (2001) Trinkwasserverordnung i. d. F. der Bekanntmachung vom 28 November 2011, die zuletzt durch Artikel 1 der Verordnung vom 5. Dezember 2012 (BGBl. I S. 2562) geändert worden ist. (Drinking-water ordinance). http://www.bgbl.de/Xaver/start.xav?startbk=Bundesanzeiger_BGBl#__Bundesanzeiger_BGBl__%2F%2F*[%40attr_id%3D%27bgbl112s2562.pdf%27]__1369244730353
  46. UBA (2005) Verwaltungsvorschrift wassergefährdende Stoffe (VwVwS) vom 17. Mai 1999, zuletzt geändert am 27. Juli 2005 (Administrative regulation on the classification of substances hazardous to water into water hazard classes and amendment of 27 July 2005)Google Scholar
  47. UBA (2012) Liste der Aufbereitungsstoffe und Desinfektionsverfahren gemäß § 11 der Trinkwasserverordnung 2001 (List of permitted additives and disinfection processes for drinking-water treatment). 17. Änderung Stand November 2012. http://www.umweltbundesamt.de/wasser/themen/downloads/trinkwasser/17_aenderung_aufbereitungsstoffe_desinfektionsverfahren_11_trinkwv_11_2012.pdf. Accessed 28 March 2013
  48. US-EPA (1993) Integrated risk information system. Methanol (CASRN 67-56-1). http://www.epa.gov/iris/subst/0305.htm. Accessed 25 May 2012
  49. US-EPA (2001) Toxicological review of bromate. http://www.epa.gov/iris/toxreviews/1002tr.pdf. Accessed 31 Aug 2012
  50. US-EPA (2010) Integrated risk information system. Ethylene glycol monobutyl ether (EGBE) (2-Butoxyethanol) (CASRN. 111-76-2). http://www.epa.gov/iris/subst/0500.htm. Accessed 25 May 2012
  51. Uth HJ (2012) Technische Sicherheit von Anlagen und Verfahren zur Erkundung und Förderung von Erdgas aus nichtkonventionellen Lagerstätten (Technical safety of installations and operations for exploration and exploitation of natural gas from unconventional reservoirs). Survey within the framework of the dialogue and information dissemination process concerning the health and environmental aspects of hydrofracking. http://dialog-erdgasundfrac.de/gutachten. Accessed 31 Aug 2012
  52. WHO—World Health Organization (2011) Guidelines for drinking-water quality. 4th edn. http://www.who.int/water_sanitation_health/publications/2011/dwq_chapters/en/index.html. Accessed 25 May 2012
  53. Wood R, Gilbert P, Sharmina M, Anderson K, Footit A, Glynn S, Nicholls F (2011) Shale gas: a provisional assessment of climate change and environmental impacts. A research report by The Tyndall Centre University of Manchester. http://www.tyndall.ac.uk/publications/technical-report/2011/shale-gas-provisional-assessment-climate-change-and-environmental. Accessed 31 Aug 2012

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Birgit C. Gordalla
    • 1
  • Ulrich Ewers
    • 2
  • Fritz H. Frimmel
    • 1
  1. 1.Chair of Water Chemistry and Water TechnologyEngler-Bunte-Institut, Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Department of Environmental Hygiene and ToxicologyRuhr District Institute of HygieneGelsenkirchenGermany

Personalised recommendations