Environmental Earth Sciences

, Volume 71, Issue 5, pp 2227–2244 | Cite as

A geological database for parameterization in numerical modeling of subsurface storage in northern Germany

  • Frank DethlefsenEmail author
  • Markus Ebert
  • Andreas Dahmke
Original Article


Underground land use can play a significant role in future concepts of energy and gas storage and requires an improved understanding of the parameters of potential storage formations (saline aquifers), for instance of porosity and permeability, and also of mineralogical and gas compositions. This study aims at providing data examples and calculating vertical spatial variations through variogram analyses of important North German geological reservoirs from Dogger, Rhaetian, Middle Buntsandstein, and Rotliegend (Sub)Groups and Formations, focusing on the western part of the North German Basin. Vertical correlation lengths of porosity and permeability data range between 0 and 30 m, while most results are calculated at approximately 2–4 m and do not show relevant differences among the evaluated formations. In the majority of the regarded formations, the Kozeny–Carman relationship between porosity and permeability is supported as long as low porosity and permeability values are excluded from the evaluation. Mineral percentages varied significantly among the evaluated sediments. Besides quartz, ankerite is the main compound in the Dogger Group, while feldspars and clay minerals were more frequent in the Rhaetian, Middle Buntsandstein, and Rotliegend sediments. Methane was the main gas compound in the reservoirs, followed by nitrogen, ethane, and carbon dioxide. This study serves as preparatory work to allow for the parameterization of geological models and a subsequent simulation of fluid transport to evaluate (long-term) safety and impacts of geothermal and gas storage projects.


Porosity Permeability Mineralogy Reservoir Spatial variability North German Basin Saline aquifers 



This study was funded by the German Federal Ministry of Education and Research (BMBF), EnBW Energie Baden-Württemberg AG, E.ON Energie AG, E.ON Gas Storage AG, RWE Dea AG, Vattenfall Europe Technology Research GmbH, Wintershall Holding GmbH and Stadtwerke Kiel AG as part of the CO2-MoPa joint project in the framework of the Special Program GEOTECHNOLOGIEN. We especially thank Mr. Grundmeier from the “Wirtschaftsverband Erdöl-Erdgas (WEG)” and the ExxonMobil Production Germany GmbH for their cooperation and data supply. Special thanks also go to Dr. Brauner (LBEG Hannover) for his kind support with data transfers and organization and two anonymous reviewers focusing their recommendation on the regional geology and on the geostatistical evaluation, respectively.


  1. Aitchison J (2003) A concise guide to compositional data analysis. University of Glasgow, GlasgowGoogle Scholar
  2. Ambrose WA, Lakshminarasimhan S, Holtz MH, Núñez-López V, Hovorka SD, Duncan I (2008) Geologic factors controlling CO2 storage capacity and permanence: case studies based on experience with heterogeneity in oil and gas reservoirs applied to CO2 storage. Environ Geol 54:1619–1633. doi: 10.1007/s00254-007-0940-2 CrossRefGoogle Scholar
  3. Bachu S, Gunter WD, Perkins EH (1994) Aquifer disposal of CO2: hydrodynamic and mineral trapping. Energy Convers Manag 35:269–279. doi: 10.1016/0196-8904(94)90060-4 CrossRefGoogle Scholar
  4. Barnes RJ (1991) Teachers aide: the variogram sill and the sample variance. Math Geol 23:673–678CrossRefGoogle Scholar
  5. Bauer S, Class H, Ebert M, Feeser V, Götze H, Holzheid A, Kolditz O, Rosenbaum S, Rabbel W, Schäfer D, Dahmke A (2012) Modeling, parameterization and evaluation of monitoring methods for CO2 storage in deep saline formations: the CO2-MoPa project. Environ Earth Sci 67:351–367. doi: 10.1007/s12665-012-1707-y CrossRefGoogle Scholar
  6. Benisch K, Bauer S (2011) Investigation of large-scale pressure propagation and monitoring for CO2 injection using a real site model. In: ModelCARE 2011. Models—repositories of knowledge, vol. 355. IAHS Publication, Leipzig, pp 245–251 (2012), 18–22 Sep 2011Google Scholar
  7. Beutler G (2005) Stratigraphie von Deutschland IV—Keuper. In: Deutsche Stratigraphische Kommission, Courier Forschungsinstitut Senckenberg, FrankfurtGoogle Scholar
  8. Bonte M, Stuyfzand PJ, Hulsmann A, Van Beelen P (2011) Underground thermal energy storage: environmental risks and policy developments in the Netherlands and European Union. Ecol Soc 16(1)Google Scholar
  9. Bourbie T, Zinszner B (1985) Hydraulic and acoustic properties as a function of porosity in Fontainebleau sandstone. J Geophys Res 90:11524–11532CrossRefGoogle Scholar
  10. Brandes J, Obst K (2011) Geological characterization of potential reservoir and barrier rock units in Mecklenburg-Western Pomerania. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 74:61–81Google Scholar
  11. Carman PC (1956) Flow of gases through porous media. Butterworths, LondonGoogle Scholar
  12. Costa A (2006) Permeability–porosity relationship: a reexamination of the Kozeny–Carman equation based on a fractal pore-space geometry assumption. Geophys Res Lett 33:1–5CrossRefGoogle Scholar
  13. Esposito A, Benson SM (2012) Evaluation and development of options for remediation of CO2 leakage into groundwater aquifers from geologic carbon storage. Int J Greenh Gas Control 7:62–73. doi: 10.1016/j.ijggc.2011.12.002 CrossRefGoogle Scholar
  14. Flett M, Gurton R, Weir G (2007) Heterogeneous saline formations for carbon dioxide disposal: impact of varying heterogeneity on containment and trapping. J Petrol Sci Eng 57:106–118. doi: 10.1016/j.petrol.2006.08.016 CrossRefGoogle Scholar
  15. Franz M, Wolfgramm M (2008) Sedimentologie, Petrologie und Fazies geothermischer Reservoire des Norddeutschen Beckens am Beispiel der Exter-Formation (Oberer Keuper, Rhaetium) NE-Deutschlands. Z Geol Wiss 36:223–247Google Scholar
  16. Fuchs S, Förster A (2010) Rock thermal conductivity of Mesozoic geothermal aquifers in the Northeast German Basin. Chem Erde 70:13–22CrossRefGoogle Scholar
  17. Geluk MC, Röhling HG (1997) High resolution sequence stratigraphy of the Lower Triassic “Buntsandstein” in the Netherlands and northwestern Germany. Geol Mijnbouw 76:227–246CrossRefGoogle Scholar
  18. Giese LB, Seibt A, Wiersberg T, Zimmer M, Erzinger J, Niedermann S, Pekdeger A (2002) Geochemistry of the formation fluids (Geochemie der Formationsfluide). In: Huenges E (ed) In-situ geothermal laboratory Groß Schönebeck: drilling, logging, hydraulic test, formation fluids and clay minerals. STR02/14 Geothermie Report 02-1. GeoForschungsZentrum Potsdam, Potsdam, pp 145–170Google Scholar
  19. Götze J (1998) Geochemistry and provenance of the Altendorf feldspathic sandstone in the Middle Bunter of the Thuringian Basin (Germany). Chem Geol 150:43–61CrossRefGoogle Scholar
  20. Gringarten E, Deutsch CV (2001) Variogram interpretation and modeling. Math Geol 33:507–534CrossRefGoogle Scholar
  21. GTN (1997) Machbarkeitsstudie zum Einsatz geothermischer Ressourcen in der Wärmeversorgung von Hamburg. Geothermie Neubrandenburg GmbH, Neubrandenburg, p 39Google Scholar
  22. Horn D (1964) Fazies, Diagenese und Ölmigration im Dogger-Beta-Hauptsandstein von Plön-Ost und Preetz (Ostholsteinischer Juratrog). Doctoral thesis (dissertation). Christian-Albrechts-Universität zu Kiel, KielGoogle Scholar
  23. Hoth P, Seibt A, Kellner T (1997) Geowissenschaftliche Bewertungsgrundlagen zur Nutzung hydrothermaler Ressourcen in Norddeutschland. Geoforschungszentrum Potsdam, PotsdamGoogle Scholar
  24. Hovorka SD, Doughty C, Benson SM, Pruess K, Knox PR (2004) The impact of geological heterogeneity on CO2 storage in brine formations: a case study from the Texas Gulf Coast. In: Baines SJ, Worden RH (eds) Geological storage of carbon dioxide. The Geological Society of London, London, pp 147–163Google Scholar
  25. Kaufhold H, Hable R, Liebsch-Dörschner T, Thomsen C, Taugs R (2011) Distribution and properties of Mesozoic sandstones and barrier rocks in Schleswig–Holstein and Hamburg—basic information possible energetic utilisation of the deeper subsurface. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 74:38–60Google Scholar
  26. Kempka T, Kühn M, Class H, Frykman P, Kopp A, Nielsen CM, Probst P (2010) Modelling of CO2 arrival time at Ketzin—part I. Int J Greenh Gas Control 4:1007–1015. doi: 10.1016/j.ijggc.2010.07.005 CrossRefGoogle Scholar
  27. Knopf S, May F, Müller C, Gerling P (2010) Neuberechnung möglicher Kapazitäten zur CO2-Speicherung in tiefen Aquifer-Strukturen. Energiewirtschaftliche Tagesfragen 60:76–80Google Scholar
  28. Kolditz O, Bauer S (2004) A process-oriented approach to computing multi-field problems in porous media. J Hydroinf 6:225–244Google Scholar
  29. Kozeny J (1927) Über kapillare Leitung des Wassers im Boden. Sitzungsber. Akad. Wiss., Wien: 136(2a):271–306Google Scholar
  30. Kushnir R, Ullmann A, Dayan A (2012) Thermodynamic and hydrodynamic response of compressed air energy storage reservoirs: a review. Rev Chem Eng 28:123–148. doi: 10.1515/revce-2012-0006 CrossRefGoogle Scholar
  31. Laier T, Nielsen BL (1989) Cementing halite in Triassic Bunter sandstone (Tønder, southwest Denmark) as a result of hyperfiltration of brines. Chem Geol 76:353–363. doi: 10.1016/0009-2541(89)90103-4 CrossRefGoogle Scholar
  32. Lee KS (2010) A review on concepts, applications, and models of aquifer thermal energy storage systems. Energies 3:1320–1334. doi: 10.3390/en3061320 CrossRefGoogle Scholar
  33. Lemieux JM (2011) Review: the potential impact of underground geological storage of carbon dioxide in deep saline aquifers on shallow groundwater resources. Hydrogeol J 19:757–778. doi: 10.1007/s10040-011-0715-4 CrossRefGoogle Scholar
  34. Lengler U, De Lucia M, Kühn M (2010) The impact of heterogeneity on the distribution of CO2: numerical simulation of CO2 storage at Ketzin. Int J Greenh Gas Control 4:1016–1025. doi: 10.1016/j.ijggc.2010.07.004 CrossRefGoogle Scholar
  35. Li X-Y, Logan BE (2001) Permeability of fractal aggregates. Water Res 35:3373–3380CrossRefGoogle Scholar
  36. Malakooti R, Azin R (2011) The optimization of underground gas storage in a partially depleted gas reservoir. Petrol Sci Technol 29:824–836. doi: 10.1080/10916460903486742 CrossRefGoogle Scholar
  37. Martens S, Kempka T, Liebscher A, Lüth S, Möller F, Myrttinen A, Norden B, Schmidt-Hattenberger C, Zimmer M, Kühn M, The Ketzin Group (2012) Europe’s longest-operating on-shore CO2 storage site at Ketzin, Germany: a progress report after three years of injection. Environ Earth Sci 67:323–334CrossRefGoogle Scholar
  38. McCann T (1998) Sandstone composition and provenance of the Rotliegend of the NE German Basin. Sed Geol 116:177–198. doi: 10.1016/s0037-0738(97)00106-1 CrossRefGoogle Scholar
  39. Mitiku AB, Bauer S (2013) Optimal use of a dome-shaped anticline structure for CO2 storage: a case study in the North German sedimentary basin. Environ Earth Sci. doi: 10.1007/s12665-013-2580-z
  40. Panfilov M (2010) Underground storage of hydrogen: in situ self-organisation and methane generation. Transp Porous Media 85:841–865. doi: 10.1007/s11242-010-9595-7 CrossRefGoogle Scholar
  41. Pawlowsky-Glahn V, Egozcue JJ, Tolosana-Delgado (2007) In: Lecture notes on compositional data analyses. University of Girona, Girona, p 87Google Scholar
  42. Pfeiffer WT (2012) Einfluss von kleinskaligen geologischen Strukturen auf die Phasenausbreitung von CO2 in tiefen salinaren Formationen. MSc Thesis. Institute of Geosciences, Christian-Albrechts-University, KielGoogle Scholar
  43. Plein E (1995) Stratigraphie von Deutschland: Norddeutsches Rotiegendbecken. Courier Forschungsinstitut Senckenberg, Frankfurt (p 193)Google Scholar
  44. Pruess K (2004) The TOUGH codes—a family of simulation tools for multiphase flow and transport processes in permeable media. Vadose Zone J 3:738–746Google Scholar
  45. Reimann C, Filzmoser P, Fabian K, Hron K, Birke M, Demetriades A, Dinelli E, Ladenberger A (2012) The concept of compositional data analysis in practice—total major element concentrations in agricultural and grazing land soils of Europe. Sci Total Environ 426:196–210CrossRefGoogle Scholar
  46. Reinhold K, Müller C (2011) Storage potential in the deeper subsurface—overview and results from the project storage catalogue of Germany. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 74:9–27Google Scholar
  47. Reinhold K, Müller C, Riesenberg C (2011) Informationssystem Speichergesteine für den Standort Deutschland—Synthese. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover (p 133)Google Scholar
  48. Schäfer D, Schlenz B, Dahmke A (2004) Evaluation of exploration and monitoring methods for verification of natural attenuation using the virtual aquifer approach. Biodegrad J 15:453–465CrossRefGoogle Scholar
  49. Scheck M, Bayer U, Lewerenz B (2003) Salt movements in the Northeast German Basin and its relation to major post-permian tectonic phases—results from 3D structural modelling, backstripping and reflection seismic data. Tectonophysics 361:277–299CrossRefGoogle Scholar
  50. Schnaar G, Digiulio DC (2009) Computational modeling of the geologic sequestration of carbon dioxide. Vadose Zone J 8:389–403CrossRefGoogle Scholar
  51. Sedlacek R (2009) Untertage-Gasspeicherung in Deutschland. Erdöl Erdgas Kohle 125:412–425Google Scholar
  52. Seibt A, Kellner T, Hoth P, Teil B (1997) Geowissenschaftliche Erfahrungen aus dem Betrieb geothermischer Heizzentralen Norddeutschlands; 8. Charakteristik der geothermischen Heizzentralen (GHZ) in Mecklenburg-Vorpommern. In: Schneider H, Huenges E (eds) Geowissenschaftliche Bewertungsgrundlagen zur Nutzung hydrogeothermaler Ressourcen in Norddeutschland. STR97/15 Geothermie report 97-1. GeoForschungsZentrum Potsdam, Potsdam, pp 135–150Google Scholar
  53. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898. doi: 10.2136/sssaj1980.03615995004400050002x CrossRefGoogle Scholar
  54. von Engelhart W (1960) Der Porenraum der Sedimente. Springer Verlag, Berlin/Göttingen/HeidelbergCrossRefGoogle Scholar
  55. Weibel R, Friis H (2004) Opaque minerals as keys for distinguishing oxidising and reducing diagenetic conditions in the Lower Triassic Bunter sandstone, North German Basin. Sed Geol 169:129–149CrossRefGoogle Scholar
  56. Wolfgramm M, Rauppach K, Seibt P (2008) Reservoir-geological characterization of Mesozoic sandstones in the North German Basin by petrophysical and petrographical data. Z Geol Wiss 36:249–265Google Scholar
  57. Ziegler PA (1990) Geological atlas of western and central Europe. Shell Internationale Petroleum Maatschappij, UKGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Frank Dethlefsen
    • 1
    Email author
  • Markus Ebert
    • 1
  • Andreas Dahmke
    • 1
  1. 1.Institute for GeosciencesChristian-Albrechts-University in KielKielGermany

Personalised recommendations