Environmental Earth Sciences

, Volume 71, Issue 5, pp 2087–2094 | Cite as

Factors influencing methane-derived authigenic carbonate formation at cold seep from southwestern Dongsha area in the northern South China Sea

  • Shuhong Wang
  • Wen YanEmail author
  • Vitor H. Magalhães
  • Zhong Chen
  • Luis M. Pinheiro
  • Nikolaus Gussone
Original Article


This paper carried out mineral and geochemical studies on a profile through a diagenetic methane-derived authigenic carbonate sample that was collected from southwestern Dongsha area of the northern South China Sea. Five samples locating in the cross-sectional middle mainly consist of dolomite and quartz, and two samples close to the surface have a small amount of Mg-calcite. The δ13C values of the samples vary between −30.59 and −0.30 % VPDB, with δ18O values ranging from 3.07 to 3.59 % VPDB, δ44/40Ca values ranging from 1.35 to 1.47 % SRM915a, indicating a contribution of methane to the carbon pool where the precipitation of authigenic carbonates occurred. Based on the isotope values alone, it can not be distinguished if the carbon source is thermogenic gas or a mixture of biogenic methane and marine dissolved inorganic carbon. The δ18O values are in general consistent with dolomite precipitation from a fluid similar to present seawater. The observed small variation might be related to the oxygen isotope composition of seep fluid. The relative small range in calcium isotope values suggests that relatively constant growth conditions and precipitation from seawater. The central part of the carbonate nodule formed under the strong influence of methane seepage, and the external part is less influenced by methane, either due to reduced methane flux to the surface or caused by erosional exhumation of the carbonate nodule from greater depth to the sediment surface.


Methane-derived authigenic carbonate Cold seep Stable carbon and calcium isotope Northern South China Sea 



This study was supported by Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-GJ03-01), the National Natural Science Foundation of China (41276050, 41176052), the Scientific and Technology Program of Guangdong Province (2011A080403021), the National Basic Research Program of China(973) (2009CB219502-4).


  1. Aloisi G, Bouloubassi I, Heijs SK, Pancost RD, Pierre C, Damsté SJS, Gottschal JC, Forney LJ, Rouchy J-M (2002) CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps. Earth Planet Sci Lett 203:195–203CrossRefGoogle Scholar
  2. Arning ET, Luückge A, Breuer C, Gussone N, Birgel D, Peckmann J (2009) Genesis of phosphorite crusts off Peru. Mar Geol 262:68–81CrossRefGoogle Scholar
  3. Baker PA, Kastner M (1981) Constraints on the formation of sedimen-tary dolomite. Science 213:214–216CrossRefGoogle Scholar
  4. Berner U, Faber E (1992) Hydrocarbon gases in surface sediments of the South China Sea. In: Jin X, Kudrass HR, Pautot G (eds) Marine geology and geophysics of the South China Sea. China Ocean Press, Beijing, pp 199–211Google Scholar
  5. Birgel D, Peckmann J (2008) Aerobic methanotrophy at ancient marine methane seeps: a synthesis. Org Geochem 39:1659–1667CrossRefGoogle Scholar
  6. Burton EA (1993) Controls on marine carbonate cement mineralogy: review and reassessment. Chem Geol 105:163–179CrossRefGoogle Scholar
  7. Campbell KA (2006) Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: past developments and future research directions. Palaeogr Palaeoclimatol Palaeoecol 232:362–407CrossRefGoogle Scholar
  8. Cavagna S, Clari P, Martire L (1999) The role of bacteria in the formation of cold seep carbonates: geological evidence from Monferrato (Tertiary, NW Italy). Sedim Geol l26:253–270CrossRefGoogle Scholar
  9. Charlou JL, Donval JP, Fouquet Y, Ondreas H, Knoery J, Cochonat P, Levaché D, Poirier Y, Jean-Baptiste P, Fourré E, Chazallon B, The ZAIROV Leg 2 Scientific Party (2004) Physical and chemical characterization of gas hydrates and associated methane plumes in the Congo–Angola Basin. Chem Geol 205: 405–425Google Scholar
  10. Chen DF, Huang YY, Yuan XL, Cathles LM (2005) Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas venting on the seafloor in the northeastern South China Sea. Petrol Geol 22:613–621CrossRefGoogle Scholar
  11. Chen Z, Yan W, Chen MH, Wang SH, Lu J, Zheng F, Xiang R, Xiao SB, Yan P, Gu SC (2006) Discovery of seep carbonate nodules as new evidence for gas venting on the northern continental slope of South China Sea. Chinese Sci Bull 51(10):1228–1237CrossRefGoogle Scholar
  12. Chen DF, Liu Q, Zhang ZW, Cathles LM, Roberts HH (2007) Biogenic fabrics in seep carbonates from an active gas vent site in Green Canyon Block 238, Gulf of Mexico. Mar Petrol Geol 24:313–320CrossRefGoogle Scholar
  13. Chen Z, Yang HP, Huang QY, Yan W, Lu J (2008) Diagenetic environment and implication of seep carbonate precipitations from the southwestern Dongsha area, South China Sea. Geoscience 22(3):382–389 (Chinese)Google Scholar
  14. Chi WC, Reed DL, Liu CS, Lundberg N (1998) Distribution of the bottom-simulating reflector in the off shore Taiwan collision zone. TAO 9:779–794Google Scholar
  15. Chow J, Lee JS, Liu CS, Lee BD, Watkins JS (2001) A submarine canyon as the cause of a mud volcano-Liuchieuyu Island in Taiwan. Mar Geol 176:55–63CrossRefGoogle Scholar
  16. Compston W, Oversby VM (1969) Lead isotopic analysis using a double spike. J Geophys Res 74:4338–4348CrossRefGoogle Scholar
  17. de Lange GJ, Mastalerz V, Dählmann A, Haese R, Mascle J, Woodside J, Foucher J-P, Lykousis V, Michard A (2006) Geochemical composition and origin for fluid and gas fluxes at Eastern Mediterranean mud volcanoes. CIESM Workshop Monogr. 29:103–110Google Scholar
  18. Druckman Y (1981) Subrecent manganese-bearing stromatolites along shorelines of the Dead Sea in Phanerozoic stromatolites. In: Monty C (ed) Phanerozoic stromatolites. Springer, Berlin, pp 197–208CrossRefGoogle Scholar
  19. Fantle MS, DePaolo DJ (2007) Ca isotopes in carbonate sediment and pore fluid from ODP Site 807A: The Ca2 + (aq)-calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistocene sediments. Geochim Cosmochim Acta 71:2524–2546CrossRefGoogle Scholar
  20. Feng D, Chen DF, Peckmann J, Bohrmann G (2010) Authigenic carbonates from methane seeps of the northern Congo fan: Microbial formation mechanism. Mar Petrol Geol 27:748–756CrossRefGoogle Scholar
  21. Friedman I, O’Neil JR (1977) Compilation of stable isotope fractionation factors of geochemical interest. In: Fleischer M (ed) Data of geochemistry, 6th edn. USGS Professional Paper, 440Google Scholar
  22. Gontharet S, Stadnitskaia A, Bouloubassi I, Pierre C, Damsté JSS (2009) Palaeo methane-seepage history traced by biomarker patterns in a carbonate crust Nile deep-sea fan (eastern Mediterranean Sea). Mar Geol 261:105–113CrossRefGoogle Scholar
  23. Greinert J, Bohrmann G, Suess E (2001) Gas hydrate-associated carbonates and methane-venting at hydrate ridge: classification, distribution, and origin of authigenic lithologies. In: Paull CK, Dillon WP (eds) Natural gas hydrates: occurrence, distribution, and detection. American Geophysical Union, Washington, DC, pp 99–114Google Scholar
  24. Gussone N, Eisenhauer A, Heuser A, Dietzel M, Bock B, Böhm F, Spero HJ, Lea DW, Bijma J, Nägler TF (2003) Model for kinetic effects on calcium isotope fractionation (δ44Ca) in inorganic aragonite and cultured Planktonic Foraminifera. Geochim Cosmochim Acta 67:1375–1382CrossRefGoogle Scholar
  25. Gussone N, Böhm F, Eisenhauer A, Dietzel M, Heuser A, Teichert BMA, Reitner J, Wörheide G, Dullo W-C (2005) Calcium isotope fractionation in calcite and aragonite. Geochim Cosmochim Acta 69:4485–4494CrossRefGoogle Scholar
  26. Gussone N, Nehrke G, Teichert BMA (2011) Calcium isotope fractionation in ikaite and vaterite. Chem Geol 285:194–202CrossRefGoogle Scholar
  27. Han XQ, Suess E, Sahling H, Wallmann K (2004) Fluid venting activity on the Costa Rica margin: New results from authigenic carbonates. Int J Earth Sci 93(4):596–611Google Scholar
  28. Henderson GM, Chu N–C, Bayon G, Benoit M (2006) δ44/42Ca in gas hydrates, porewaters and authigenic carbonates from Niger Delta sediments. Goldschmidt Conference Abstracts, A244Google Scholar
  29. Heuser A, Eisenhauer A, Gussone N, Bock B, Hansen BT, Nägler TF (2002) Measurement of calcium isotopes (δ44Ca) using a multicollector TIMS technique. Int J Mass Spectrom 220:385–399CrossRefGoogle Scholar
  30. Humphrey JD (2000) New geochemical support for mixing-zone dolomitization at Golden Grove, Barbados. J Sediment Res 70:1160–1170CrossRefGoogle Scholar
  31. Kowsmann RO, Carvalho MD (2002) Erosional event causing gas venting on the upper continental slope, Campos basin Brazil. Cont Shelf Res 22:2345–2354CrossRefGoogle Scholar
  32. Kruglyakova R, Gubanov Y, Kruglyakov V, Prokoptsev G (2002) Assessment of technogenic and natural hydrocarbon supply into the Black Sea and seabed sediments. Cont Shelf Res 22:2395–2407CrossRefGoogle Scholar
  33. Lemarchand D, Wasserburg GJ, Papanastassiou DA (2004) Rate-controlled calcium isotope fractionation in synthetic calcite. Geochim Cosmochim Acta 68(22):4665–4678CrossRefGoogle Scholar
  34. Lim D, Choi J, Xu Z, Kim M, Choi D, Jung H, Lee P (2009) Methane-derived authigenic carbonates from the Ulleung basin sediments, East Sea of Korea. Cont Shelf Res 29:1588–1596CrossRefGoogle Scholar
  35. Liu LH, Wu NY (2013) Simulation of advective methane flux and AOM in Shenhu area, the northern South China Sea. Environ Earth Sci. doi: 10.1007/s12665-013-2471-3 Google Scholar
  36. Loncke L, Mascle J, Parties Fanil Scientific (2004) Mud volcanoes, gas chimneys, pockmarks and mounds in the Nile deep-sea fan (Eastern Mediterranean): Geophysical evidences. Mar Petrol Geol 21:669–689CrossRefGoogle Scholar
  37. Lu HF, Liu J, Chen F, Liao ZL, Sun XM, Su X (2005) Mineralogy and stable isotopic composition of authigenic carbonates in bottom sediments in the offshore area of southwest Taiwan, South China Sea: Evidence for gas hydrate occurrence. Earth Sci Front 12:268–276 (Chinese with English abstract)Google Scholar
  38. Magalhães VH (2007) Authigenic carbonates and fluid escape structures in the Gulf of Cadiz. University of Aveiro, AveiroGoogle Scholar
  39. Marriott CS, Henderson GM, Belshaw NS, Tudhope AW (2004) Temperature dependence of δ7Li, δ44Ca and Li/Ca during growth of calcium carbonate. Earth Planet Sci Lett 222:615–624CrossRefGoogle Scholar
  40. McDonnell SL, Max MD, Cherkis NZ, Czarnecki MF (2000) Tectono-sedimentary controls on the likelihood of gas hydrate occurrence near Taiwan. Mar Petrol Geol 17:929–936CrossRefGoogle Scholar
  41. Moore TS, Murray RW, Kurtz AC, Schrag DP (2004) Anaerobic methane oxidation and the formation of dolomite. Earth Planet Sci Lett 229:141–154CrossRefGoogle Scholar
  42. Nuzzo M, Hornibrook ERC, Gill F (2009) Origin of light volatile hydrocarbon gases in mud volcano fluids, Gulf of Cadiz-evidence for multiple sources and transport mechanisms in active sedimentary wedges. Chem Geol 266:350–363CrossRefGoogle Scholar
  43. Pape T, Blumenberg M, Seifert R, Egorov VN, Gulin SB, Michaelis W (2005) Lipid geochemistry of methane-seep-related Black Sea carbonates. Palaeogr Palaeoclimatol Palaeoecol 227:31–47CrossRefGoogle Scholar
  44. Peckmann J, Thiel V (2004) Carbon cycling at ancient methane-seeps. Chem Geol 205:443–467CrossRefGoogle Scholar
  45. Pinheiro LM, Ivanov MK, Sautkin A, Akhmanov G, Magalhães VH, Volkonskaya A, Monteiro JH, Somoza L, Gardner J, Hamouni N, Cunha MR (2003) Mud volcanism in the Gulf of Cadiz: Results from the TTR-10 cruise. Mar Geol 195:131–151CrossRefGoogle Scholar
  46. Ritger S, Carson B, Suess E (1987) Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin. Geol Soc Am Bull 98:147–156CrossRefGoogle Scholar
  47. Roberts HH, Aharon P, Carney R, Larkin J, Sassen R (1990) Seafloor responses to hydrocarbon seeps, louisiana continental slope. Geo-Mar Lett 10:232–243CrossRefGoogle Scholar
  48. Schnurle P, Liu CS, Hsiuan TH, Wang TK (2004) Characteristics of gas hydrate and free gas offshore southwestern Taiwan from a combined MCS/OBS data analysis. Mar Geophy Res 25:157–180CrossRefGoogle Scholar
  49. Suess E, Torres ME, Bohrmann G, Collier RW, Greinert J, Linke P, Rehder G, Trehu A, Wallmann K, Winckler G, Zuleger E (1999) Gas hydrate destabilization: Enhanced dewatering, benthic material turnover and large methane plumes at the cascadia convergent margin. Earth Planet Sci Lett 170:1–15CrossRefGoogle Scholar
  50. Takeuchi R, Machiyama H, Matsumoto R (2002) Methane seep, chemosynthetic communities, and carbonate crusts on the Kuroshima Knoll, offshore Ryukyu islands In: proceedings of the Fourth International Conference on Gas Hydrate, Yokohama, 97–101 May 19–23Google Scholar
  51. Tang J, Dietzel M, Böhm F, Köhler SJ, Eisenhauer A (2008) Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: II Ca isotopes. Geochim Cosmochim Acta 72:3733–3745CrossRefGoogle Scholar
  52. Teichert BMA, Eisenhauer A, Bohrmann G, Haase-Schramm A, Bock B, Linke P (2003) U/Th systematics and ages of authigenic carbonates from hydrate ridge, cascadia margin: Recorders of fluid flow variations. Geochim Cosmochim Acta 67(20):3845–3857CrossRefGoogle Scholar
  53. Teichert BMA, Bohrmann G, Suess E (2005a) Chemoherms on Hydrate Ridge—Unique microbially-mediated carbonate build-ups growing into the water column. Palaeogeogr Palaeocl 227:67–85CrossRefGoogle Scholar
  54. Teichert BMA, Gussone N, Eisenhauer A, Bohrmann G (2005b) Clathrites-Archives of near-seafloor pore fluid evolution (δ44/40Ca, δ13C, δ18O) in gas hydrate environments. Geology 33(3):213–216CrossRefGoogle Scholar
  55. Teichert BMA, Gussone N, Eisenhauer A (2006) Processes influencing the Ca isotopes in porewaters of the Cascadia margin (ODP Leg 204). Eur Geosci Un 8:08875Google Scholar
  56. Teichert BMA, Gussone N, Torres ME (2009) Controls on calcium isotope fractionation in sedimentary porewaters. Earth Planet Sci Lett 279:373–382CrossRefGoogle Scholar
  57. Tong H, Feng D, Cheng H, Yang S, Wang H, Min AG, Edwards RL, Chen Z, Chen D (2013) Authigenic carbonates from seeps on the northern continental slope of the South China Sea: new insights into fluid sources and geochronology. Mar Petrol Geol 43:260–271CrossRefGoogle Scholar
  58. Vasconcelos C, McKenzie JA, Warthmann R, Bernasconi SM (2005) Calibration of the δ18O paleothermometer for dolomite precipitated in microbial cultures and natural environments. Geology 33:317–320CrossRefGoogle Scholar
  59. Wang SH, Yan W, Magalhães HV, Chen Z, Pinheiro ML, Gussone N (2012) Calcium isotope fractionation and its controlling factors of authigenic carbonates in the cold seeps from the northern South China Sea. Chinese Sci Bull 57(11):1325–1332CrossRefGoogle Scholar
  60. Wu SG, Liu Z, Wang WY, Guo JH, Lüdmann T, Wong HK (2004) Late Cenozoic neotectonics in the Dongsha islands region and its responds to colliusion between Chinese continental margin and Luzon. Oceanol et Limnol Sinica 35(6):481–490 (Chinese with English abstract)Google Scholar
  61. Zhu YH, Huang YY, Matsumoto R, Wu BH (2002) Geochemical and stable isotopic compositions of pore fluids and authigenic siderite concretions from site 1146, ODP Leg 184: Implication for gas hydrate. In: Prell WL, Wang P, Rea DK, Clemans SC et al (eds) Proceedings of the ODP Scientific Results, 184, pp 1–15Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shuhong Wang
    • 1
    • 2
  • Wen Yan
    • 1
    • 2
    Email author
  • Vitor H. Magalhães
    • 3
  • Zhong Chen
    • 1
    • 2
  • Luis M. Pinheiro
    • 3
  • Nikolaus Gussone
    • 4
  1. 1.CAS Key Laboratory of Marginal Sea Geology, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
  2. 2.Guangzhou Center for Gas Hydrate ResearchChinese Academy of SciencesGuangzhouChina
  3. 3.Centre for Environmental and Marine Studies (CESAM) and Geosciences DepartmentUniversity of AveiroAveiroPortugal
  4. 4.Institut für MineralogieUniversität MünsterMünsterGermany

Personalised recommendations