Environmental Earth Sciences

, Volume 70, Issue 8, pp 3661–3673 | Cite as

Optimal use of a dome-shaped anticline structure for CO2 storage: a case study in the North German sedimentary basin

Special Issue

Abstract

Structural traps like anticline structures are preferred for carbon dioxide sequestration as they limit lateral spreading of CO2 and thus provide localized storage. This study, therefore, assesses strategies for maximizing storage of CO2 using as hypothetical but realistic storage site a typical anticline structure in the North German sedimentary basin. Scenario simulations are performed to investigate the effects of well number, location, spacing and alignment, using fracture pressure and containment of CO2 within the anticline as constraining factors. Scenarios are ranked by stored CO2 mass, pressure increase due to injection and CO2 immobilized by dissolution or residual trapping. It is found that pressure overlap from different injectors influences CO2 migration considerably, limiting the storable amount to about 150 Mt, which represents half of the static capacity estimate.

Keywords

CO2 sequestration Reservoir capacity Injection strategies Horizontal and vertical wells North German sedimentary basin 

References

  1. Bachu S, Adams JJ (2003) Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution. Energy Convers Manage 44:3151–3175CrossRefGoogle Scholar
  2. Bachu S, Bonijoly D, Bradshaw J, Burruss R, Holloway S, Christensen NP, Mathiassen OM (2007) CO2 storage capacity estimation: methodology and gaps. Int J of Greenh Gas Control 1:430–443. doi:10.1016/S1750-5836(07)00086-2 CrossRefGoogle Scholar
  3. Bauer S, Class H, Ebert M, Feeser V, Goetze H, Holzheid A, Kolditz O, Rosenbaum S, Rabbel W, Schaefer D, Dahmke A (2012) Modeling, parameterization and evaluation of monitoring methods for CO2 storage in deep saline formations: the CO2-MoPa project. Environ Earth Sci 67(2):351–367. doi:10.1007/s12665-012-1707-y CrossRefGoogle Scholar
  4. Benisch K, Bauer S (2012a) Short- and long-term regional pressure build-up during CO2 injection and its applicability for site monitoring. Submitted to the Int J of Greenh Gas ControlGoogle Scholar
  5. Benisch K, Bauer S (2012b) Investigation of large-scale pressure propagation and monitoring for CO2 injection using a real site model. In: Models-repositories of knowledge, IAHS Publication 355, pp 245–251Google Scholar
  6. Bennion B, Bachu S (2006) The impact of interfacial tension and pore size distribution/capillary pressure character on CO2 relative permeability at reservoir conditions in CO2-brine systems. SPE 99325Google Scholar
  7. Bennion B, Bachu S (2008) Drainage and imbibition relative permeability relationships for supercritical CO2/brine and H2S/brine systems in intergranular sandstone, carbonate shale, and anhydrite rocks. SPE Reserv Eval Eng 11(3):487–496. doi:10.2118/99326-PA CrossRefGoogle Scholar
  8. Beyer C, Li D, Lucia M, Kühn M, Bauer S (2012) Modelling CO2-induced fluid-rock interaction in the Altensalzwedel gas reservoir, Part II: coupled reactive transport simulations. Environ Earth Sci 67(2):573–588. doi:10.1007/s12665-012-1684-1 Google Scholar
  9. Bradshaw J, Bachu S, Bonijoly Buruss R, Holloway S, Christensen NP, Mathiassen OM (2007) CO2 storage capacity estimation: issues and development of standards. Int J of Greenh Gas Control 1:62–68CrossRefGoogle Scholar
  10. Brooks AN, Corey AT (1964) Hydraulic properties of porous media. Hydrology paper, Colorado State University, Fort Collins, Colorado, USAGoogle Scholar
  11. Cade RW (1993) Horizontal wells: development and applications. In: Proceedings of 5th international symposium on geophysics for mineral, geotechnical and environmental applications, Tulsa, Oklahoma, 24–28 Oct 1993Google Scholar
  12. Carbon Sequestration Leadership Forum (CSLF) Task Force (2007) Estimation of CO2 storage capacity in geological media. Phase II: final report from the task force for review and identification of standards for CO2 storage capacity estimationGoogle Scholar
  13. Cherubini Y, Cacace M, Blöcher G, Scheck-Wenderoth M (2013) Impact of single inclined faults on the fluid flow and heat transport: results from 3D finite element simulations. Environ Earth Sci. doi:10.1007/s12665-012-221
  14. Christensen NP, Holloway S (2004) Assessing European potential for geological storage of CO2 from combustion of fossil fuel. GESTCO project summary reportGoogle Scholar
  15. Class H, Ebigbo A, Helmig R et al. (2009) A benchmark study on problems related to CO2 storage in geological formations. Comput Geosci. doi:10.1007/s10596-009-9146-x
  16. Doughty C, Pruess K, Benson S, Hovorka S, Knox P, Green C (2001) Capacity investigation of brine-bearing sands of the Frio-Formation for geologic sequestration of CO2. In: Proceedings of first national conference on carbon sequestration, national energy technology laboratory, Washington DC, 14–17 May 2001Google Scholar
  17. Duan Z, Hu J, Li D, Mao S (2008) Densities of the CO2–H2O and CO2–H2O–NaCl systems up to 647 K and 100 MPa. Energy Fuels 22(3):1666–1674. doi:10.1021/ef700666b CrossRefGoogle Scholar
  18. Graupner B, Li D, Bauer S (2011) The coupled simulator ECLIPSE–OpenGeoSys for the simulation of CO2 storage in saline formations. Energy Procedia 4:3794–3800. doi:10.1016/j.egypro.2011.02.314 CrossRefGoogle Scholar
  19. Heinemann N, Wilkinson M, Pickup GE, Haszeldine RS, Cutler NA (2012) CO2 storage in the offshore UK bunter sandstone formation. Int J Greenh Gas Control 6:210–219CrossRefGoogle Scholar
  20. Hese F (2009) Geologische Modelle der Deck und Speichergesteine Schleswig Holsteins. Strukturgeologie-Petrographie-Hydraulische Parameter. CO2-MoPa Teilprojekt M6Google Scholar
  21. Holloway S (2005) Underground sequestration of carbon dioxide—a viable greenhouse gas mitigation option. Energy 30:2318–2333CrossRefGoogle Scholar
  22. IPCC (2005) IPCC special report on carbon dioxide capture and storage, prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 442Google Scholar
  23. Joshi SD (2003) Cost/benefits of horizontal wells. SPE 83621Google Scholar
  24. Kempka T, Kühn M (2013) Numerical simulations of CO2 arrival times and reservoir pressure coincide with observations from the Ketzin pilot site, Germany. Environ Earth Sci. doi:10.1007/s12665-
  25. Kuckshinrichs W, Markewitz P, Hake JF (2004) CO2 capture and sequestration in Germany: status and perspective. In: Proceedings of third annual conference on carbon capture and sequestration, Alexandria, VA, 3–6 May 2004Google Scholar
  26. Laier T (1989) Mapping of low enthalpy brines in Denmark for geothermal exploitation. In: Miles DL (eds) WRI-6 Proceedings of the 6th international symposium on water-rock interaction. Belkema, Rotterdam, The Netherlands, pp 409–412 Google Scholar
  27. Li D, Graupner BJ, Bauer S (2011) A method for calculating the liquid density for the CO2–H2O–NaCl system under CO2 storage condition. Energy Procedia 4:3817–3824. doi:10.1016/j.egypro.2011.02.317 CrossRefGoogle Scholar
  28. Li D, Bauer S, Benisch K, Graupner B, Beyer C (2013) OpenGeoSys-Chem-App: a coupled simulator for reactive transport in multiphase systems: code development and application at a representative CO2 storage formation in Northern Germany. Accepted at Acta GeotechnicaGoogle Scholar
  29. Mehnert E, Okwen RT (2012) Near-well pressure distribution of CO2 injection in a partially penetrating well. In: Proceedings of TOUGH Symposium, Lawrence Berkeley National Laboratory, Berkeley, California, 17–19 Sept 2012Google Scholar
  30. Mitiku AB, Li D, Bauer S, Beyer C (2011) Model development and application on the feedback of geochemical reaction on porosity and permeability. In Proceedings: 10th annual conference on carbon capture and sequestration, Pittsburgh, US, 2–5 May 2011Google Scholar
  31. Mitiku AB, Li D, Bauer S, Beyer C (2013) Geochemical modelling of CO2 interaction with water and rock formation and assessment of its impact referring to Northern Germany sedimentary basin. In revision in J Appl GeochemGoogle Scholar
  32. Moss B, Barson D, Rakhit K, Dennis H, Swarbrick R (2003) Formation pore pressure and formation water. In: Evans D, Graham C, Armour A, Bathurst P (eds) The millennium atlas: petroleum geology of the central and northern North sea. The Geological society of London, UKGoogle Scholar
  33. Okwen RT, Stewart MT, Cunningham JA (2011) Temporal variations in near-wellbore pressures during CO2 injection in saline aquifers. Int J Greenh Gas Control 5:1140–1148CrossRefGoogle Scholar
  34. Pfeiffer WT (2012) Einfluss von kleinskaligen geologischen Strukturen auf die Phasenausbreitung von CO2 in tiefen salinaren formationen. MSc-thesis (in German), Institute of Geosciences, Kiel University, GermanyGoogle Scholar
  35. Pruess K, Xu T, Apps J, Garcia J (2003) Numerical modeling of aquifer disposal of CO2. SPE J 8(1):49–60CrossRefGoogle Scholar
  36. Reichle D (1999) Carbon sequestration research and development. US Department of Energy’s Office of Fossil Energy and Office of Science Report. DOE/SC/FE-1, Washington DC, USAGoogle Scholar
  37. Robert M, May F, Müller C (2007) Regional search, selection and geological characterization of large anticlinal structure, as a candidate site for CO2 storage in northern Germany. Environ Geol 54:1607–1618Google Scholar
  38. Rutqvist J, Birkholzer JT, Cappa F, Tsang CF (2007) Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Convers Manage 48:1798–1807CrossRefGoogle Scholar
  39. Schäfer F, Walter L, Class H (2012) The regional pressure impact of CO2 Storage: a showcase study from the North German Basin. Environ Earth Sci 65:2037–2049. doi:10.1007/s12665-011-1184-8 CrossRefGoogle Scholar
  40. Schlumberger (2008a) ECLIPSE technical description. Schlumberger information solutions software (SIS)Google Scholar
  41. Schlumberger (2008b) ECLIPSE reference manual. Schlumberger information solutions software (SIS)Google Scholar
  42. Spycher N, Pruess K (2005) CO2-H2O mixtures in the geological sequestration of CO2. II. Partitioning in chloride brines at 12–100 °C and up to 600 bar. Geochim Cosmochim Acta 69(13):3309–3320. doi:10.1016/j.gca.2005.01.015 CrossRefGoogle Scholar
  43. Sung WM, Lee YS, Kim KH, Jang YH, Lee JH, Yoo IH (2011) Investigation of CO2 behaviour and study on design of optimal injection into Gorae-V aquifer. Environ Earth Sci 64:1815–1821. doi:10.1007/s12665-011-1001-4 CrossRefGoogle Scholar
  44. US Department of Energy (US DOE) (2008) Methodology for development of geological storage estimates for carbon dioxide, Appendix 3 and 4. Prepared by capacity and fairways subgroup of the geologic Working Group of the DOE regional carbon sequestration partnerships, pp 37Google Scholar
  45. Weibel R, Friis H (2004) Opaque minerals as keys for distinguishing oxidising and reducing diagenetic conditions in the Lower Triassic Bunter Sandstone, North German Basin. Sediment Geol 169(3–4):129–149CrossRefGoogle Scholar
  46. Wiese B, Zimmer M, Nowak M, Pilz P (2013) Above-zone well-based hydraulic and geochemical monitoring of the CO2 reservoir in Ketzin, Germany. Environ Earth Sci. doi:10.1007/s12665-
  47. Williams JDO, Bentham M, Jin M, Pickup G, Mackay E, Gammer D, Green A (2012) The Effect of geological structure and heterogeneity on CO2 storage in simple 4-way dip structures; a modelling study from the UK Southern North Sea. In: Proceedings of the 11th GHGT conference, Kyoto, Japan, 18–22 Nov 2012Google Scholar
  48. Wiprut D, Zoback MD (2000) Fault reactivation and fluid flow along a previously dormant normal fault in the northern North Sea. Geology 28:595–598Google Scholar
  49. Wu T (2004) Permeability prediction and drainage capillary pressure simulation in sandstone reservoirs. PhD dissertation, Texas A&M University, USGoogle Scholar
  50. Yang F, Bai B, Dunn-Norman S (2011) Modeling the effects of completion techniques and formation heterogeneity on CO2 sequestration in shallow and deep saline aquifers. Environ Earth Sci 64:841–849. doi:10.1007/s12665-011-0908-0 CrossRefGoogle Scholar
  51. Zhou Q, Birkholzer JT, Tsang C-F, Rutqvist J (2008) A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations. Int J of Greenh Gas Control 2:626–639CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Geosciences, GeohydromodellingChristian Albrechts University of KielKielGermany

Personalised recommendations