Environmental Earth Sciences

, Volume 70, Issue 8, pp 3855–3873

Hydraulic fracturing in unconventional gas reservoirs: risks in the geological system, part 2

Modelling the transport of fracturing fluids, brine and methane
  • Alexander Kissinger
  • Rainer Helmig
  • Anozie Ebigbo
  • Holger Class
  • Torsten Lange
  • Martin Sauter
  • Michael Heitfeld
  • Johannes Klünker
  • Wiebke Jahnke
Special Issue

Abstract

Hydraulic fracturing is a method used for the production of unconventional gas resources. Huge amounts of so-called fracturing fluid (10,000–20,000 m3) are injected into a gas reservoir to create fractures in solid rock formations, upon which mobilised methane fills the pore space and the fracturing fluid is withdrawn. Hydraulic fracturing may pose a threat to groundwater resources if fracturing fluid or brine can migrate through fault zones into shallow aquifers. Diffuse methane emissions from the gas reservoir may not only contaminate shallow groundwater aquifers, but also escape into the atmosphere where methane acts as a greenhouse gas. The working group “Risks in the Geological System” as part of ExxonMobil’s hydrofracking dialogue and information dissemination processes was tasked with the assessment of possible hazards posed by migrating fluids as a result of hydraulic fracturing activities. In this work, several flow paths for fracturing fluid, brine and methane are identified and scenarios are set up to qualitatively estimate under what circumstances these fluids would leak into shallower layers. The parametrisation for potential hydraulic fracturing sites in North Rhine-Westphalia and Lower Saxony (both in Germany) is derived from literature using upper and lower bounds of hydraulic parameters. The results show that a significant fluid migration is only possible if a combination of several conservative assumptions is met by a scenario.

Keywords

Fracturing fluids Methane Modelling 

Supplementary material

12665_2013_2578_MOESM1_ESM.pdf (307 kb)
PDF (306 KB)

References

  1. Bachu S, Bennion B (2007) Effects of in-situ conditions on relative permeability characteristics of CO2-brine systems. Environ Geol 54(8):1707–1722. doi:10.1007/s00254-007-0946-9 CrossRefGoogle Scholar
  2. Batzle M, Wang Z (1992) Seismic properties of pore fluids. Geophys 57(11):1396. doi:10.1190/1.1443207 CrossRefGoogle Scholar
  3. Brooks RH, Corey AT (1964) Hydraulic properties of porous media. In: Hydrology Papers, vol 3. Colorado State University, Fort CollinsGoogle Scholar
  4. Daubert TE, Danner RP (1989) Physical and thermodynamic properties of pure chemicals: data compilation. Hemisphere PublishingGoogle Scholar
  5. Du C, Zhang X, Melton B, Fullilove D, Suliman ET, Gowelly S, Grant D, Calvez J (2009) A workflow for integrated Barnett Shale gas reservoir modeling and simulation. In: Proceedings of Latin America and the Caribbean Pet engineering conference. Society of Petroleum Engineers, p 112. doi:10.2118/122934-MS
  6. Duan Z, Møller N, Weare JH (1992a) An equation of state for the CH4-CO2-H2O system: I. Pure systems from 0 to 1000C and 0 to 8000 bar. Geochimica et Cosmochimica Acta 56(7):2605–2617. doi:10.1016/0016-7037(92)90347-L CrossRefGoogle Scholar
  7. Duan Z, Møller N, Weare JH (1992b) An equation of state for the CH4-CO2-H2O system: II. Mixtures from 50 to 1000C and 0 to 1000 bar. Geochimica et Cosmochimica Acta 56(7):2619–2631. doi:10.1016/0016-7037(92)90348-M CrossRefGoogle Scholar
  8. Ewen C, Borchardt D, Richter S, Hammerbacher R (2012) Hydrofracking risk assessment. http://dialog-erdgasundfrac.de/risikostudie-fracking
  9. Flemisch B, Darcis M, Erbertseder K, Faigle B, Mosthaf K, Müthing S, Nuske P, Tatomir A, Wolf M, Helmig R (2011) DuMux: DUNE for multi-phase, component, scale, physics,... flow and transport in porous media. Adv Water Resour 34(9):1102–1112. doi:10.1016/j.advwatres.2011.03.007
  10. Fuller E, Schettler P, Giddings J (1966) New method for prediction of binary gas phase diffusion coefficients. Ind Eng Chem 58(5):18–27CrossRefGoogle Scholar
  11. Gordalla B, Ewers U, Frimmel FH (2013) Hydraulic fracturing—a toxicological threat for groundwater and drinking water? Environ. Earth Sci (under revision this issue)Google Scholar
  12. Helmig R (1997) Multiphase flow and transport processes in the subsurface: a contribution to the modeling of hydrosystems. Springer, BerlinGoogle Scholar
  13. Kissinger A, Helmig R, Ebigbo A (2012) Modellierung des transports von Frack-Fluiden, Lagerstttenwasser und Methan. 14. In: Aachener Altlasten- und Bergschadenkundliches Kolloquium, Heft 130 der Schriftenreihe der GDMB, pp 21–31Google Scholar
  14. King GE (2012) SPE 152596 Hydraulic fracturing 101 : what every representative, environmentalist, regulator, reporter, investor, University researcher, neighbor and engineer should know about estimating frac risk and improving frac performance in unconventional gas. In: SPE hydraul fracturing technol conference. The Woodlands, Texas, USA, pp 1–80Google Scholar
  15. Koike K, Liu C, Sanga T (2011) Incorporation of fracture directions into 3D geostatistical methods for a rock fracture system. Environ Earth Sci 66(5):1403–1414 doi:10.1007/s12665-011-1350-z CrossRefGoogle Scholar
  16. Kunz E (1994) Gasinhalt der Nebengesteine des Steinkohlebergbaus. Glückauf Forschungsheft 4(5):106–110Google Scholar
  17. Lange T, Sauter M, Heitfeld M, Schetelig K, Jahnke W, Kissinger A, Helmig R, Ebigbo A, Class H (2013) Hydraulic fracturing in unconventional gas reservoirs—risks in the geological system, part 1. Environ Earth Sci (this issue)Google Scholar
  18. Myers T (2012) Potential contaminant pathways from hydraulically fractured shale to aquifers. Ground water, pp 1–11. doi:10.1111/j.1745-6584.2012.00933.x
  19. Reid R, Prausnitz E, Poling B (1988) The properties fo gases and liquids, 4th edn. McGraw-Hill, New YorkGoogle Scholar
  20. Riedl J, Faetsch S, Schmitt-Jansen M, Altenburger R (2013) Ecotoxicological assessment of fracturing fluids using a component-based mixture approach. Environ Earth Sci. doi:10.1007/s12665-013-2320-4
  21. Sauter M, Helmig R, Schetelig K, Brosig K, Lange T, Kissinger A, Ebigbo A, Heitfeld M, Klünker J, Wiebke J, Paape B (2012) Abschätzung der Auswirkungen von Fracking-Manahmen auf das oberflächennahe Grundwasser Inhaltsverzeicha nis Geologisch-hydrogeologischer Rahmen. Technical report. http://dialogerdgasundfrac.de/gutachten, 122 p
  22. Tatomir AB, Szymkiewicz A, Class H, Helmig R (2011) Modeling two phase flow in large scale fractured porous media with an extended multiple interacting continua method. CMES 77(2):81–112Google Scholar
  23. Tenzer H, Park C, Kolditz O, McDermott CI (2010) Application of the geomechanical facies approach and comparison of exploration and evaluation methods used at Soultz-sous-Forts (France) and Spa Urach (Germany) geothermal sites. Environ Earth Sci 61(4):853–880. doi:10.1007/s12665-009-0403-z CrossRefGoogle Scholar
  24. U.S. Energy Information Administration (2011) Review of emerging shale gas and shale oil plays. Technical report, U.S. Energy Iinformation Administration, Washington, DCGoogle Scholar
  25. Uth H-J (2012) Gutachten zur technischen Sicherheit von Anlagen und Verfahren zur Erkundung und Förderung von Erdgas aus nichtkonventionellen Lagerstätten. http://dialog-erdgasundfrac.de/gutachten, 113 p
  26. Walter L, Binning PJ, Oladyshkin S, Flemisch B, Class H (2012) Brine migration resulting from CO2 injection into saline aquifers: an approach to risk estimation including various levels of uncertainty. Int J Greenh Gas Control 9:495–506. doi:10.1016/j.ijggc.2012.05.004 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alexander Kissinger
    • 1
  • Rainer Helmig
    • 1
  • Anozie Ebigbo
    • 4
  • Holger Class
    • 1
  • Torsten Lange
    • 2
  • Martin Sauter
    • 2
  • Michael Heitfeld
    • 3
  • Johannes Klünker
    • 3
  • Wiebke Jahnke
    • 2
  1. 1.Department of Hydromechanics and Modelling of Hydrosystems, Institute for Modelling Hydraulic and Environmental SystemsUniversität StuttgartStuttgartGermany
  2. 2.Department Applied Geology, Geoscience Centre Göttingen Georg-August-University GöttingenGöttingenGermany
  3. 3.Ingenieurbüro Heitfeld-Schetelig GmbHAachenGermany
  4. 4.E.ON Energy Research Center (E.ON ERC), RWTH Aachen UniversityAachenGermany

Personalised recommendations