Advertisement

Environmental Earth Sciences

, Volume 71, Issue 4, pp 1641–1650 | Cite as

Controlling factors of the δ 11B-pH proxy and its research direction

  • J. XiaoEmail author
  • Z. D. Jin
  • Y. K. Xiao
  • M. Y. He
Original Article

Abstract

Significant boron isotope fractionation occurs in nature (−70 ‰ to +75 ‰) due to the high geochemical reactivity of boron and the large relative mass difference between 10B and 11B. Since the 1990s, reconstruction of ancient seawater pH using the isotopic composition of boron in bio-carbonates (δ 11Bcarb), and then calculation of the past pCO2 have become important issues for the international isotope geochemistry community, and are called the δ 11B-pH proxy. Although many achievements have been made by this proxy, various aspects of boron systematics require rigorous evaluation. Based on the previous researches, mechanism of boron isotope fractionation, variation of boron isotope (δ 11B) in nature (especially in bio-carbonates) and controlling factors of the δ 11B-pH proxy, such as the dissociation constant of B(OH)3 in seawater (pKa), the δ 11B of seawater (δ 11BSW), the boron isotopic fractionation factor between B(OH) 4 and B(OH)3 (α 4–3), and the incorporated species of boron into bio-carbonates, are reviewed in detail and the research directions of this proxy are proposed. Generally, the controversy about pKa, δ 11Bsw, and α 4–3 is relatively less, but whether boron incorporated into bio-carbonates only in the form of B(OH) 4 remains doubtful. In the future, it is required that the physicochemical processes that control boron incorporation into carbonates be rigorously characterized and that the related chemical and isotopic fractionation be quantified. It is also necessary and important to establish a “best-fit empirically equation” between δ 11Bcarb and pH of seawater based on the precipitation experiments of inorganic or culture experiments of corals or foraminifera. In addition, extended application of the δ 11B-pH proxy to the earlier part of the Phanerozoic relying on the Brachiopods is worthy of studying. Like other geochemical indicators, there are limiting factors of δ 11B; however, it remains a very powerful tool in the reconstruction of past seawater pH at present.

Keywords

Boron isotope Marine bio-carbonate δ11B-pH proxy Ancient seawater pH 

Notes

Acknowledgments

This work was financially supported by National Science Foundation of China through grants 41003012, 41103008, “Western Doctor” of the West Light Foundation of Chinese Academy of Sciences and the Key Research Program of the Chinese Academy of Sciences (Grant KZZD-EW-04-02).

References

  1. Barth SR (1993) Boron isotope variations in nature: a synthesis. Geol Rundsch 82:640–651CrossRefGoogle Scholar
  2. Barth SR (1998) Application of boron isotopes for tracing source of anthropogenic contamination in groundwater. Water Res 32(3):685–690CrossRefGoogle Scholar
  3. Barth SR (2000) Stable isotope geochemistry of sediment-hosted groundwater from a Imte Paleozoie-Early Mesozoic section in central Europe. J Hydrol 235:72–87CrossRefGoogle Scholar
  4. Bassett RL (1990) A critical evaluation of the available measurements for the stable isotopes of boron. Appl Geochem 5:541–554CrossRefGoogle Scholar
  5. Byrne RH, Yao W, Klochko K, Tossell JA, Kaufman AJ (2006) Experimental evaluation of the isotopic exchange equilibrium 10B(OH)3 + 11B(OH)4=11B(OH)3 + 10B(OH)4 in aqueous solution. Deep-Sea Res 153:684–688CrossRefGoogle Scholar
  6. Chaussidon M, Albaréde F (1992) Secular boron isotopic variations in the continental crust: an ion microprobe study. Earth Planet Sci Lett 108:229–241CrossRefGoogle Scholar
  7. Chaussidon M, Jambon A (1993) Boron content and isotopic composition of oceanic basalts: geochemical and cosmochemical implications. Earth Planet Sci Lett 121:277–291CrossRefGoogle Scholar
  8. Chetelat B, Gaillardet J, Freydier R (2009a) Use of B isotopes as a tracer of anthropogenic emissions in the atmosphere of Paris, France. Appl Geochem 24:810–820CrossRefGoogle Scholar
  9. Chetelat B, Liu CQ, Gaillardet J, Wang QL, Zhao ZQ, Liang CS, Xiao YK (2009b) Boron isotopes geochemistry of the Changjiang Basin Rivers. Geochim Cosmochim Acta 73:6084–6097CrossRefGoogle Scholar
  10. Cividini D, Lemarchand D, Chabaux F, Boutin R, Pierret MC (2010) From biogenical to lithogenical control of the B geochemical cycle in a forested watershed (Strengbach, Vosges). Geochim Cosmochim Acta 74:3143–3163CrossRefGoogle Scholar
  11. Dickson A (1990) Thermodynamics of dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep-Sea Res 37:755–766CrossRefGoogle Scholar
  12. Foster GL, Pogge von Strandmann PAE, Rae JWB (2010) Boron and magnesium isotopic composition of seawater. Geochem Geophy Geosy 11:Q08015. doi: 10.1029/2010GC003201 CrossRefGoogle Scholar
  13. Gaillardet J, Allègre CJ (1995) Boron isotopic compositions of corals: seawater or diagenesis record? Earth Planet Sci Lett 136:665–676CrossRefGoogle Scholar
  14. He MY, Xiao YK, Jin ZD, Liu WG, Ma YQ, Zhang YL, Luo CG (2013) Quantification of boron incorporation into synthetic calcite under controlled pH and temperature conditions using a differential solubility technique. Chem Geol 337–338:67–74CrossRefGoogle Scholar
  15. Hemming NG, Hanson GN (1992) Boron isotopic composition and concentration in modern marine carbonates. Geochim Cosmochim Acta 56:537–543CrossRefGoogle Scholar
  16. Hemming NG, Reeder RJ, Hanson GN (1995) Mineral-fluid partitioning and isotopic fractionation of boron in synthetic calcium carbonate. Geochim Cosmochim Acta 59:371–379CrossRefGoogle Scholar
  17. Hershey JP, Fernandez M, Milne PJ, Millero FJ (1986) The ionization of boric acid in NaCl, Na-Ca-Cl, and Na-Mg-Cl solutions at 25 °C. Geochim Cosmochim Acta 50:143–148CrossRefGoogle Scholar
  18. Hogan JF, Blum JD (2003) Boron and lithium isotopes as groundwater tracers: a study at the Fresh Kills Landfill, Staten Island, New York, USA. Appl Geochem 18:615–627CrossRefGoogle Scholar
  19. Hönisch B, Hemming NG, Loosed B (2007) Comment on “A critical evaluation of the boron isotope-pH proxy: the accuracy of ancient ocean pH estimates” by M. Pagani, D. Lemarchand, A. Spivack and J. Gaillardet. Geochim Cosmochim Acta 71:1636–1641CrossRefGoogle Scholar
  20. Inghram MG (1946) Isotopic constitution of tungstene, silicon and boron. Phys Rev 70:653–660CrossRefGoogle Scholar
  21. Ishikawa T, Nakamura E (1993) Boron isotope systematics of marine sediments. Earth Planet Sci Lett 117:567–580CrossRefGoogle Scholar
  22. Joachimski MM, Slmon L, Gelden RV (2005) Boron isotope geochemistry of Paleozoic brachiopod calcite: implications for a secular change in the boron isotope geochemistry of seawater over the Phanerozoic. Geochim Cosmochim Acta 69(16):4035–4044CrossRefGoogle Scholar
  23. Kakihana H, Kotaka M, Satoh S, Nomura M, Okamoto M (1977) Fundamental studies on the ion-exchange separation of boron isotopes. Bull Chem Soc Jpn 50:158–163CrossRefGoogle Scholar
  24. Klochko K, Kaufman A, Yao W, Byrne R, Tossell J (2006) Experimental measurements of boron isotope fractionation in seawater. Earth Planet Sci Lett 248:261–270CrossRefGoogle Scholar
  25. Klochko K, Cody GD, Tossell JA, Dera P, Kaufman AJ (2009) Re-evaluating boron speciation in biogenic calcite and aragonite using 11B MAS NMR. Geochim Cosmochim Acta 73:1890–1900CrossRefGoogle Scholar
  26. Kopf A, Deyhle A (2002) Back to the roots: boron geochemistry of mud volcanoes and its implications for mobilization depth and global B cycling. Chem Geol 192(3/4):195–210CrossRefGoogle Scholar
  27. Lécuyer C, Grandjean P, Reynard B, Albarède F, Telouk P (2002) 11B/10B analysis of geological materials by ICP-MS Plasma 54: application to the boron fractionation between brachiopod calcite and seawater. Chem Geol 186:45–55CrossRefGoogle Scholar
  28. Lemarchand D, Gaillardet J, Lewin É, Allègre CJ (2000) The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH. Nature 408:951–954CrossRefGoogle Scholar
  29. Lemarchand D, Gaillardet J, Lewin É, Allègre CJ (2002) Boron isotope systematics in large rivers: implications for the marine boron budget and paleo-pH reconstruction over the Cenozoic. Chem Geol 190:123–140CrossRefGoogle Scholar
  30. Li HL, Xiao YK, Wei HZ, Du XY, Wang XF, Chen YF (2006) Primary study for trace element and isotopic compositions of boron in growing corals from Sanya Bay, China. J Salt Lake Res 14:35–41 (in Chinese with English abstract)Google Scholar
  31. Liu Y, Tossell JA (2005) Ab initio molecular orbital calculations for boron isotope fractionations on borinc acids and borates. Geochim Cosmochim Acta 69:3995–4006CrossRefGoogle Scholar
  32. Mather JD, Porteous NC (2001) The geochemistry of boron and its isotopes in groundwaters from marine and non-marine sandstone aquifers. Appl Geochem 16:821–834CrossRefGoogle Scholar
  33. Musachi M, Oi T, Ossaka T, Kakihana H (1991) Natural boron isotope fractionation between hot spring water and rock in direct contact. Isotopenraxis 27:163–166Google Scholar
  34. Oi T (2000) Ab initio orbital calculations of reduced partition function ratios of polyboric acids and borate anions. Naturforsch 55:623–628Google Scholar
  35. Oi T, Tsukamoto K, Akai H, Kahihana H, Hosoe M (1988) Boron isotope separation by ion-exchange chromatiography using an anion-exchange resin in halide forms: separation factors at 25 °C. J Chromatogr 450(3):343–352CrossRefGoogle Scholar
  36. Oi T, Nomura M, Musashi M, Ossaka T, Okamoto M, Kakihana H (1989) Boron isotopic compositions of some boron minerals. Geochim Cosmochim Acta 53:3189–3319CrossRefGoogle Scholar
  37. Pagani M, Spivack A (2007) Response to the Comment by B. Hönisch, N.G. Hemming, B. Loose on “A critical evaluation of the boron isotope-pH proxy: the accuracy of ancient ocean pH estimates”. Geochim Cosmochim Acta 71:1642CrossRefGoogle Scholar
  38. Pagani M, Lamarchand D, Spivack A, Gaillardet J (2005) A critical evaluation of the boron isotope-pH proxy: the accuracy of ancient ocean pH estimates. Geochim Cosmochim Acta 69:953–961CrossRefGoogle Scholar
  39. Palmer MR, Sturchio NC (1990) The boron isotope systematics of the Yellowstone National Park (Wyoming) hydrothermal system: a reconnaissance. Geochim Cosmochim Acta 54:2319–2323Google Scholar
  40. Palmer MR, Swihart GH (1996) Boron isotope geochemistry: an overview. Rev in Mineral Geochem 33:709–744Google Scholar
  41. Palmer MR, Spivack AJ, Edmond JM (1987) Temperature and pH controls over isotopic fractionation during absorption of boron marine clay. Geochim Cosmochim Acta 51:2319–2323CrossRefGoogle Scholar
  42. Palmer MR, London D, Morgan GB, Babb HA (1992) Experimental determination of fractionation of 11B/10B between tourmaline and aqueous vapour: a temperature and pressure dependent isotopic system. Chem Geol 101:123–129Google Scholar
  43. Peacock SM, Hervig RL (1999) Boron isotopic composition of subduction-zone metamorphic rocks. Chem Geol 160:281–290CrossRefGoogle Scholar
  44. Pearson PN, Palmer MR (1999) Middle Eocene seawater pH and atmospheric carbon dioxide concentration. Science 284:1824–1826CrossRefGoogle Scholar
  45. Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–699CrossRefGoogle Scholar
  46. Pennisi M, Leeman WP, Tonarini S, Pennisi A, Nabelek P (2000) Boron, Sr, O, and H isotope geochemistry of groundwaters from Mt. Etna (Sicily)-hydrologic implications. Geochimica et Cosmchimica Acta 64(6):961–974CrossRefGoogle Scholar
  47. Rollion-bard C, Erez J (2010) Intra-shell boron isotope ratios in the symbiont-bearing benthic foraminiferan Amphistegina lobifera: implications for δ 11B vital effects and paleo-pH reconstructions. Geochim Cosmochim Acta 74:1530–1536CrossRefGoogle Scholar
  48. Rollion-bard C, Blamart D, Trebosc J, Tricot G, Mussia A, Cuif JP (2011) Boron isotopes as pH proxy: a new look at boron speciation in deep-sea corals using 11B MAS NMR and EELS. Geochim Cosmochim Acta 75:1003–1012CrossRefGoogle Scholar
  49. Rose EF, Chausidon M, France-Lanord C (2000) Fractionation of boron isotopes during erosion processes: the example of Himalayan rivers. Geochim Cosmochim Acta 64(3):397–408CrossRefGoogle Scholar
  50. Rose-Koga EF, Sheppard SMF, Chaussidon M, Carignan J (2006) Boron isotopic composition of atmospheric precipitations and liquid-vapour fractionations. Geochim Cosmochim Acta 70:1603–1615CrossRefGoogle Scholar
  51. Roy RN, Roy LN, Vogel KM, Porter-Moore C, Pearson T, Good CE, Millero FJ, Campbell DM (1993) Thermodynamics of the dissociation of boric acid in seawater at salinities 5 to 45 and temperatures 0 to 45 °C. Mar Chem 44:249–267CrossRefGoogle Scholar
  52. Sanyal A, Hemming NG, Hanson GN, Broecker WS (1995) Evidence for a high pH in the glacial ocean from boron isotopes in foraminifera. Nature 373:234–236CrossRefGoogle Scholar
  53. Sanyal A, Hemming NG, Broecker WS, Lea DW, Spero HJ, Hanson GN (1996) Oceanic pH control on the boron isotopic composition of foraminifera: evidence from culture experiments. Paleoceanography 11(5):513–517CrossRefGoogle Scholar
  54. Sanyal A, Nugent M, Reeder RJ, Bijma J (2000) Seawater pH control on the boron isotopic composition of calcite: evidence from inorganic calcite precipitation experiments. Geochim Cosmochim Acta 64:1551–1555CrossRefGoogle Scholar
  55. Schmitt A, Vigier N, Lemarchand D, Millot R, Stille P, Chabaux F (2012) Processes controlling the stable isotope compositions of Li, B, Mg and Ca in plants, soils and waters: a review. CR Geosci 344:704–722CrossRefGoogle Scholar
  56. Simon L, Lécuyer C, Maréchal C, Coltice N (2006) Modelling the geochemical cycle of boron: implications for the long-term δ11B evolution of seawater and oceanic crust. Chem Geol 225(1/2):61–67CrossRefGoogle Scholar
  57. Spivack AJ, Edmond JM (1986) Determination of boron isotopic ratios by thermal ionization mass spectrometry of the dicesium metaborate cation. Anal Chem 58:31–35CrossRefGoogle Scholar
  58. Spivack AJ, Edmond JM (1987) Boron isotope exchange between seawater and the oceanic crust. Geochim Cosmochim Acta 51:1033–1043CrossRefGoogle Scholar
  59. Spivack AJ, Palmer MR, Edmond JM (1987) The sedimentary cycle of the boron isotopes. Geochim Cosmochim Acta 51:1939–1949CrossRefGoogle Scholar
  60. Spivack AJ, You CF, Smith J (1993) Foraminiferal boron isotopic ratios as a proxy for surface ocean pH over the past 21 Myr. Nature 363:149–151CrossRefGoogle Scholar
  61. Su C, Suarez DL (1995) Coordination of adsorbed boron: a FTIR spectroscopic study. Environ Sci Technol 29:302–311CrossRefGoogle Scholar
  62. Swihart GH, Moore PB, Callis EL (1986) Boron isotopic composition of marine and nonmarine evaporite borates. Geochim Cosmochim Acta 50:1297–1301CrossRefGoogle Scholar
  63. Taylor SR, Mclennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publication, OxfordGoogle Scholar
  64. Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc 57:562–581CrossRefGoogle Scholar
  65. Vengosh A, Chivas AR, MuCulloch MT, Starinsky A, Kolodny Y (1991a) Boron isotope geochemistry of Australian salt lakes. Geochim Cosmochim Acta 55:2591–2606CrossRefGoogle Scholar
  66. Vengosh A, Kolodny Y, Starinsky A, Chivas AR, McCuloch MT (1991b) Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates. Geochim Cosmochim Acta 55:2901–2910CrossRefGoogle Scholar
  67. Vengosh A, Starinsky A, Kolodny Y, Chivas AR (1991c) Boron isotope geochemistry as a tracer for the evolution of brines and associated hot springs from the Dead Sea, Israel. Geochimica et Cosomchimica Acta 55(6):1689–1695CrossRefGoogle Scholar
  68. Vengosh A, Starinsky A, Kolodny Y, Chivas AR, Raab M (1992) Boron isotope variation during fractional evaporation of seawater: new constraints on the marine vs non-marine debate. Geology 20:799–802CrossRefGoogle Scholar
  69. Vengosh A, Heumann KG, Juraske S, Kasher R (1994) Boron isotope application for tracing sources of contamination in groundwater. Environ Sci Technol 28(11):1968–1974CrossRefGoogle Scholar
  70. Wieser ME, Iyer SS, Krouse HR, Cantagallo MI (2001) Variations in the boron isotope composition of Coffea arabica beans. Appl Geochem 16:317–322CrossRefGoogle Scholar
  71. Williams LB, Hervig RL (2004) Boron isotope composition of coals: a potential tracer of organic contaminated fluids. Appl Geochem 19:1625–1636CrossRefGoogle Scholar
  72. Williams LB, Hervig RL, Wieser ME, Hutcheon I (2001) The influence of organic matter on the boron isotope geochemistry of the gulf coast sedimentary basin, USA. Chem Geol 174:445–461CrossRefGoogle Scholar
  73. Xiao YK, Wang L (2001) The effect of pH and temperature on the isotopic fractionation of boron between saline brine and sediments. Chem Geol 171:253–261CrossRefGoogle Scholar
  74. Xiao YK, Beary ES, Fassett JD (1988) An improved method for the high precision isotopic measurement of boron by thermal ionization mass spectrometry. Int J Mass Spectrom Ion Processes 85:203–213CrossRefGoogle Scholar
  75. Xiao YK, Sun DP, Wang YH, Jin L (1992) Boron isotopic compositions of brine, sediments, and source water in Da Qaidam, China. Geochim Cosmochim Acta 56:1561–1568CrossRefGoogle Scholar
  76. Xiao YK, Li SZ, Wei HZ, Sun AD, Zhou WJ, Liu WG (2006) An unusual isotopic fractionation of boron in synthetic calcium carbonate precipitated from seawater and saline water. Sci China, Ser B 49:454–465CrossRefGoogle Scholar
  77. Xiao YK, Li HL, Liu WG, Wang XF, Jiang SY (2008) Boron isotopic fractionation in laboratory inorganic carbonate precipitation: evidence for the incorporation of B(OH)3 into carbonate. Sci China Ser D 51:1776–1785CrossRefGoogle Scholar
  78. Xiao J, Xiao YK, Liu CQ, Jin ZD (2011) Boron isotope fractionation during brucite deposition from artificial seawater. Clim Past 7:693–706CrossRefGoogle Scholar
  79. Xiao J, Xiao YK, Jin ZD, Liu CQ, He MY (2013) Boron isotopic compositions in growing corals from the South China Sea. J Asian Earth Sci 62:561–567CrossRefGoogle Scholar
  80. Yu JM, Elederfield H, Hönishch B (2007) B/Ca in planktonic foraminifera as a proxy for surface seawater pH. Paleoceanography 22:PA2202. doi: 10.1029/2006PA001347
  81. Yu JM, Foster GL, Elederfield H, Broecker WS, Clark E (2010) An evaluation of benthic foraminiferal B/Ca and δ11B for deep ocean carbonate ion and pH reconstructions. Earth Planet Sci Lett 293:114–120CrossRefGoogle Scholar
  82. Zeebe RE (2005) Stable boron isotope fractionation between dissolved B(OH)3 and B(OH)4. Geochim Cosmochim Acta 69(11):2753–2766CrossRefGoogle Scholar
  83. Zhao ZQ, Liu CQ (2010) Anthropogenic inputs of boron into urban atmosphere: evidence from boron isotopes of precipitations in Guiyang city, China. Atmos Environ 44(34):4165–4171CrossRefGoogle Scholar
  84. Zhao ZQ, Liu CQ, Xiao YK, Lang YC (2003) Geochemical study of boron isotopes in the process of loess weathering. Sci China Ser D 46:106–116CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth EnvironmentChinese Academy of SciencesXi’anChina
  2. 2.Qinghai Institute of Salt LakesChinese Academy of SciencesXiningChina

Personalised recommendations