Advertisement

Environmental Earth Sciences

, Volume 70, Issue 5, pp 2271–2282 | Cite as

Geophysical characterization of the complex dynamics of groundwater and seawater exchange in a highly stressed aquifer system linked to a coastal lagoon (SE Spain)

  • J. ReyEmail author
  • J. Martínez
  • G. G. Barberá
  • J. L. García-Aróstegui
  • J. García-Pintado
  • D. Martínez-Vicente
Original Article

Abstract

Anthropogenic pressure influences the two-way interactions between shallow aquifers and coastal lagoons. Aquifer overexploitation may lead to seawater intrusion, and aquifer recharge from rainfall plus irrigation may, in turn, increase the groundwater discharge into the lagoon. We analyse the evolution, since the 1950s up to the present, of the interactions between the Campo de Cartagena Quaternary aquifer and the Mar Menor coastal lagoon (SE Spain). This is a very heterogeneous and anisotropic detrital aquifer, where aquifer–lagoon interface has a very irregular geometry. Using electrical resistivity tomography, we clearly identified the freshwater–saltwater transition zone and detected areas affected by seawater intrusion. Severity of the intrusion was spatially variable and significantly related to the density of irrigation wells in 1950s–1960s, suggesting the role of groundwater overexploitation. We distinguish two different mechanisms by which water from the sea invades the land: (a) horizontal advance of the interface due to a wide exploitation area and (b) vertical rise (upconing) caused by local intensive pumping. In general, shallow parts of the geophysical profiles show higher electrical resistivity associated with freshwater mainly coming from irrigation return flows, with water resources mostly from deep confined aquifers and imported from Tagus river, 400 km north. This indicates a likely reversal of the former seawater intrusion process.

Keywords

Electrical resistivity tomography Marine seawater intrusion Detrital coastal aquifer Campo de Cartagena Mar Menor lagoon 

Notes

Acknowledgments

This work has been developed under the framework of the 08225/PI/08 research project financed by “Programa de Generación del Conocimiento Científico de Excelencia” of Fundación Séneca, Región de Murcia (II PCTRM 2007-10); the Project CGL2009-12396 (Ministerio de Ciencia e Innovación); and the project “Modelación hidrológica en zonas semiáridas”, financed by Dirección General de Investigación y Política Científica (Murcia Region, Spain). Gratitude is expressed to the Instituto Universitario del Agua y del Medioambiente (University of Murcia) and to the Foundation Euromediterranean Water Institute for the access to the information of the latter project. Additional financial support came through the “CARTAG-EAU” project financed by the French SICMED initiative.

References

  1. Abdul Nassir SS, Loke MH, Lee CY, Nawawi MNM (2000) Salt water intrusion by geoelectrical imaging surveys. Geophys Prospect 48:647–661CrossRefGoogle Scholar
  2. Auken E, Jørgensen F, Sørensen KI (2003) Large-scale TEM investigation for groundwater. Explor Geophys 34:188–194CrossRefGoogle Scholar
  3. Baudron P, García-Aróstegui JL, Barbecot F, Martínez-Vicente D, Travi Y, Leduc C, Noret A (2012) Evolution d’un aquifère côtier multicouche soumis à une forte pression anthropique. Approche multi-isotopique. Campo de Cartagena (SE Espagne). TIAC 2012: Tecnología de la Intrusión en Acuíferos Costeros, Alicante, pp 375–385Google Scholar
  4. Caputo R, Piscitelli S, Oliveto A, Rizzo E, Lapenna V (2003) High-resolution resistivity tomographies in active tectonic studies. Examples from the Tyrnavos Basin, Greece. J Geodyn 36:19–35CrossRefGoogle Scholar
  5. Carreño MF, Esteve MA, Martínez J, Palazón JA, Pardo MT (2008) Habitat changes in coastal wetlands associated to hydrological changes in the watershed. Estuar Coast Shelf Sci 77:475–483CrossRefGoogle Scholar
  6. CES (1995) Recursos hídricos y su importancia en el desarrollo de la Región de Murcia. Consejo Económico y Social de la Región de Murcia, MurciaGoogle Scholar
  7. Colella A, Lapenna V, Rizzo E (2004) High-resolution imaging of the high agri valley basin (Southern Italy) with electrical resistivity tomography. Tectonophysics 386:29–40CrossRefGoogle Scholar
  8. de Franco R, Biella G, Tosi L, Teatini P, Lozej A, Chiozzotto B, Giada M, Rizzetto F, Claude C, Mayer A, Bassan V, Gasparetto-Stori G (2009) Monitoring the saltwater intrusion by time lapse electrical resistivity tomography: the Chioggia test site (Venice Lagoon, Italy). J Appl Geophys 69:117–130CrossRefGoogle Scholar
  9. García-Aróstegui JL, Jiménez-Martínez J, Baudron P, Martínez-Vicente D, Senent M, Guerra J (2012) Geometría del acuífero del Campo de Cartagena e implicaciones en el funcionamiento hidrogeológico. TIAC 2012: Tecnología de la Intrusión en Acuíferos Costeros, Alicante, pp 439–449Google Scholar
  10. García-Pintado J, Martínez-Mena M, Barberá GG, Albaladejo J, Castillo VM (2007) Anthropogenic nutrient sources and loads from a Mediterranean catchment into a coastal lagoon: Mar Menor, Spain. Sci Total Environ 373:220–239CrossRefGoogle Scholar
  11. García-Pintado J, Barberá GG, Erena M, Castillo VM (2009) Calibration of structure in a distributed forecasting model for a semiarid flash flood: dynamic surface storage and channel roughness. J Hydrol 377:165–184CrossRefGoogle Scholar
  12. Gattacceca JC, Vallet-Coulomb C, Mayer A, Claude C, Radakovitch O, Conchetto E, Hamelin B (2009) Isotopic and geochemical characterization of salinization in the shallow aquifers of a reclaimed subsiding zone: the southern Venice Lagoon coastland. J Hydrol 378:46–61CrossRefGoogle Scholar
  13. Griffiths DH, Barker RD (1993) Two-dimensional resistivity imaging and modelling in areas of complex geology. J Appl Geophys 29:211–226CrossRefGoogle Scholar
  14. IGME (1974) Mapa Geológico y Memoria Explicativa de la Hoja 1:50.000 de Llano del Beal, p 16Google Scholar
  15. ITGE (1994) Las aguas subterráneas del campo de Cartagena (Murcia). MINER, p 62Google Scholar
  16. Jiménez-Carceles FJ, Álvarez-Rogel J (2008) Phosphorus fractionation and distribution in salt marsh soils affected by mine wastes and eutrophicated water: a case study in SE Spain. Geoderma 144:299–309CrossRefGoogle Scholar
  17. Jiménez-Martínez J, Skaggs TH, van Genuchten MTh, Candela L (2009) A root zone modelling approach to estimating groundwater recharge from irrigated areas. J Hydrol 367:138–149CrossRefGoogle Scholar
  18. Jiménez-Martínez J, Aravena R, Candela J (2011) The role of leaky boreholes in the contamination of a regional confined aquifer. A case study: the Campo de Cartagena Region, Spain. Water Air Soil Pollut 215:311–327CrossRefGoogle Scholar
  19. Jiménez-Martínez J, Candela L, García-Aróstegui JL y Aragón R (2012) A 3D geological model of Campo de Cartagena, SE Spain: Hydrogeological implications. Geol Acta 10:49–62Google Scholar
  20. Kouzana L, Benassi R, Ben Mammou A, Sfar Felfoul M (2010) Geophysical and hydrochemical study of the seawater intrusion in Mediterranean semi arid zones. Case of the Korba coastal aquifer (Cap-Bon, Tunisia). J Afr Earth Sci (in press)Google Scholar
  21. Lambán LJ, Aragón R (2003) Estado de la intrusión marina en el Campo de Cartagena: Evaluación preliminar a partir de la composición química del agua subterránea. In: Tecnología de la intrusión de aguas de mar en acuíferos costeros: Países mediterráneos. IGME, pp 345–355Google Scholar
  22. Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys Prospect 44:131–152CrossRefGoogle Scholar
  23. Loke MH, Dahlin T (2002) A comparison of the Gauss-Newton and quasi-Newton methods in resistivity imaging inversion. J Appl Geophys 49:149–162CrossRefGoogle Scholar
  24. Maillet GM, Rizzo E, Revil A, Vella C (2005) High resolution electrical resistivity tomography (ERT) in a transition zone environment: application for detailed internal architecture and infilling processes study of a Rhône River paleo-channel. Mar Geophys Res 26:317–328CrossRefGoogle Scholar
  25. Martínez J, Macías C (2012) Determinación de la pluma de intrusión marina en el Arco Sur del Mar Menor a través de las actuaciones para el asesoramiento de captación de aguas subterráneas mediante zanjas de drenaje. TIAC 2012: Tecnología de la Intrusión en Acuíferos Costeros, Alicante, pp 477–488Google Scholar
  26. Martínez J, Benavente J, García-Aróstegui JL, Hidalgo CH, Rey J (2009) Contribution of electrical resistivity tomography to the study of detrital aquifers affected by seawater intrusion–extrusion effects: the river Vélez delta (Vélez-Málaga, southern Spain). Eng Geol 108:161–168CrossRefGoogle Scholar
  27. Massey AC, Taylor GK (2007) Coastal evolution in south-west England, United Kingdom: an enhanced reconstruction using geophysical surveys. Mar Geol 245:123–140CrossRefGoogle Scholar
  28. Ministerio de Medio Ambiente (2006) Informe de sostenibilidad ambiental del Plan Especial de Actuación en situaciones de alerta y eventual sequía en la Cuenca Hidrográfica del Segura, p 21Google Scholar
  29. Mora V, Rodriguez-Estrella T, Aragón R (1988) Intrusión marina fósil en el Campo de Cartagena (Murcia). TIAC’88: Tecnología de la Intrusión en Acuíferos Costeros, Almuñecar, pp 221–236Google Scholar
  30. Morrow FJ, Ingham MR, McConchie JA (2010) Monitoring of tidal influences on the saline interface using resistivity traversing and cross-borehole resistivity tomography. J Hydrol 389:69–77CrossRefGoogle Scholar
  31. Naji A, Ouazar D, Cheng HD (1998) Locating the saltwater-freshwater interface using nonlinear programming and h-adaptive BEM. Eng Anal Boundary Elem 21:253–259CrossRefGoogle Scholar
  32. Nielsen L, Jørgensen NO, Gelting P (2007) Mapping of the freshwater lens in a coastal aquifer on the Keta Barrier (Ghana) by transient electromagnetic soundings. J Appl Geophys 62:1–15CrossRefGoogle Scholar
  33. Nowroozi A, Horrocks S, Henderson P (1999) Saltwater intrusion into the freshwater aquifer in the eastern shore of Virginia: a reconnaissance electrical resistivity survey. J Appl Geophys 42:1–22CrossRefGoogle Scholar
  34. Pazdirek O, Blaha V (1996) Examples of resistivity imaging using ME-100 resistivity field acquisition system. In: EAGE 58th conference and technical exhibition. Extended Abstract, AmsterdamGoogle Scholar
  35. Pérez-Ruzafa A, Gilabert J, Gutiérrez JM, Fernández AI, Marcos C, Sabah S (2002) Evidence of a planktonic food web response to changes in nutrient input dynamics in the Mar Menor coastal lagoon, Spain. Hydrobiologia 475:359–369CrossRefGoogle Scholar
  36. Pérez-Ruzafa A, Fernández A, Marcos C, Gilabert J, Quispe JI, García Charton JA (2005) Spatial and variations of hydrological conditions, nutrients and α chlorophyll in a mediterranean coastal lagoon (Mar Menor, Spain). Hydrobiologia 550:11–17Google Scholar
  37. Pulido-Leboeuf P (2004) Seawater intrusion and associated processes on a small coastal complex aquifer (Castell de Ferro, Spain). Appl Geochem 19:1517–1527CrossRefGoogle Scholar
  38. Robledano F, Martínez J, Esteve MA (2013) Determinants of wintering waterbird changes in a Mediterranean coastal lagoon affected by eutrophication. Ecol Ind (in press)Google Scholar
  39. Rodríguez Estrella T (2003) Situación de la intrusión marina en la Cuenca del Segura: evolución desde TIAC’88. In: Tecnología de la intrusión de aguas de mar en acuíferos costeros: Países mediterráneos. IGME, pp 499–507Google Scholar
  40. Store H, Storz W, Jacobs F (2000) Electrical resistivity tomography to investigate geological structures of earth’s upper crust. Geophys Prospect 48:455–471CrossRefGoogle Scholar
  41. Sumanovac F (2006) Mapping of thin sandy aquifers by using high resolution reflection seismics and 2-D electrical tomography. J Appl Geophys 59:345–346CrossRefGoogle Scholar
  42. Suzuki K, Toda S, Kusunoki K, Fujimitsu Y, Mogi T, Jomori A (2000) Case studies of electrical and electromagnetic methods applied to mapping active faults beneath the thick quaternary. Eng Geol 56:29–45CrossRefGoogle Scholar
  43. Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  44. Van Dam JC, Meulenkamp JJ (1967) Some results of the geo-electrical resistivity method in groundwater investigations in The Netherlands. Geophys Prospect 15:92–115CrossRefGoogle Scholar
  45. Wilson SR, Ingham M, McConchie JA (2006) The applicability of earth resistivity methods for saline interface definition. J Hydrol 316:301–312CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. Rey
    • 1
    Email author
  • J. Martínez
    • 2
  • G. G. Barberá
    • 3
  • J. L. García-Aróstegui
    • 4
  • J. García-Pintado
    • 5
    • 6
  • D. Martínez-Vicente
    • 5
    • 7
  1. 1.Dpto. de Geología, Escuela Politécnica Superior de LinaresUniversidad de JaénLinaresSpain
  2. 2.Dpto. Ingeniería Mecánica y Minera, Escuela Politécnica Superior de LinaresUniversidad de JaénLinaresSpain
  3. 3.Department of Soil and Water Conservation and Organic Waste ManagementCSIC-CEBASEspinardo, MurciaSpain
  4. 4.Instituto Geológico y Minero de EspañaMurciaSpain
  5. 5.Euromediterranean Water InstituteEspinardo, MurciaSpain
  6. 6.National Centre for Earth ObservationUniversity of ReadingReadingUK
  7. 7.Instituto Universitario del Agua y el Medio AmbienteUniversidad de MurciaMurciaSpain

Personalised recommendations