Skip to main content
Log in

Statistical analysis of the hydrogeochemical evolution of groundwater in hard rock coastal aquifers of Thoothukudi district in Tamil Nadu, India

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The study of groundwater hydrogeochemistry of a hard rock aquifer system in Thoothukudi district has resulted in a large geochemical data set. A total of 100 water samples representing various lithologies like Hornblende Biotite Gneiss, Alluvium Marine, alluvium Fluvial, Quartzite, Charnockite, Granite and Sandstone were collected for two different seasons and analyzed for major ions like Ca2+, Mg2+, Na+, K+, HCO3 , Cl, SO4 2−, NO3 , PO4 , F and H4SiO4. Statistical analysis of the data has been attempted to unravel the hidden relationship between ions. Correlation analyses and factor analyses were applied to classify the groundwater samples and to identify the geochemical processes controlling groundwater geochemistry. Factor analysis indicates that sea water intrusion followed by leaching of secondary salts, weathering and anthropogenic impacts are the dominant factors controlling hydrogeochemistry of groundwater in the study area. Factor score overlay indicate major active hydrogeochemical regimes are spread throughout the Eastern, Northwestern and Southeastern parts of the study area. The dominant ions controlling the groundwater chemistry irrespective of season are Cl, Na+, Mg2+, Ca2+, SO4 2−, K+ and NO3 . An attempt has also been made to note the seasonal variation of the factor representations in the study area. This study also illustrates the usefulness of statistical analysis to improve the understanding of groundwater systems and estimates of the extent of salinity/salt water intrusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abu-Jaber NS, Aloosy AS, Jaward A (1997) Determination of aquifer susceptibility to pollution using statistical analysis. Environ Geol 31(1/2):94–106

    Article  Google Scholar 

  • Andrade JM, Padra D, Muniategui S (1992) Multivariate analysis of environmental data for two hydrographic basins. Anal Lett 25:379–399

    Article  Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater. American Public Health Association, Washington

    Google Scholar 

  • Aruga R, Gastaldi D, Negro G, Ostacoli G (1995) Pollution of a river basin and its evolution with time studied by multivariate statistical analysis. Anal Chim Acta 310:15–25

    Article  Google Scholar 

  • Ashley RP, Lloyd JW (1978) An example of the use of factor analysis and cluster analysis in groundwater chemistry interpretation. Hydrol J 39:355–364

    Article  Google Scholar 

  • Barbecot F, Marlin C, Gibert E, Dever L (2000) Hydrochemical and isotopic characterisation of the Bathonian and Bajocian coastal aquifer of the Caen area (Northern France). Appl Geochem 15:791–805

    Article  Google Scholar 

  • Ben-Yaakov S (1973) pH buffering of pore water of recent anoxic marine sediments. Limnol Oceanogr 18(1):86–94

    Article  Google Scholar 

  • CGWB (Central Ground Water Board) (2009) South Eastern Coastal Region, District groundwater brochure, Thoothukudi District, Tamil Nadu

  • Briz Kishore BH, Murali G (1992) Factor analysis for revealing hydrochemical characteristics of a watershed. Environ Geol J 19:3–9

    Google Scholar 

  • Cardona A, Carrillo-Rivera JJ, Huizar-A′ lvarez R, Graniel-Castro E (2004) Salinization in coastal aquifers of arid zones: an example from Santo Domingo, Baja California Sur, Mexico. Environ Geol 45:350–366

    Article  Google Scholar 

  • Chae GT, Kim K, Yun ST, Kim KH, Kim SO, Choi BY, Kim HS, Rhee CW (2004) Hydrogeochemistry of alluvial groundwaters in an agricultural area: an implication for groundwater contamination susceptibility. Chemosphere 55:369–378

    Article  Google Scholar 

  • Chandrasekar N, Joevivek V, John Prince Soundaranayagam, Divya C (2011) Geospatial Analysis of Coastal Geomorphological Vulnerability along Southern Tamil Nadu Coast. Geospatial World Forum, Hyderabad

  • Chatterjee MK, Mohabey NK (1998) Potential fluorosis problems around Chandidongri, Madhya Pradesh, India. Environ Geochem Health 20:1–4

    Article  Google Scholar 

  • Chidambaram S (2000) Hydrogeochemical studies of groundwater in Periyar district, Tamilnadu, India, unpublished Ph.D thesis, Department of Geology, Annamalai University

  • Chidambaram, S, Anandhan P, Prasanna MV, Srinivasamoorthy K, Vasanthavigar M (2012) Major ion chemistry and identification of hydrogeochemical processes controlling groundwater in and around Neyveli Lignite Mines, Tamil Nadu, South India. Arab J Geosci. doi:10.1007/s12517-012-0589-3

  • Chidambaram S, Ramanathan AL, Prasanna MV, Anandhan P, Srinivasamoorthy K, Vasudevan S (2007) Identification of hydrogeochemically active regimes in groundwaters of Erode district, Tamil Nadu: a statistical approach. Asian J Water Environ Pollut 5(3):93–102

    Google Scholar 

  • Chidambaram S, Ramanathan AL, Prasanna MV, Anandhan P, Srinivasamoorthy K, Vasudevan S (2008) A statistical approach to identify the hydrogeochemically active regimes in groundwaters of Erode district, Tamil Nadu. Asian J Water Environ Pollut 5(3):93–102

    Google Scholar 

  • Chidambaram S, Ramanathan AL, Prasanna MV, Karmegam U, Dheivanayagi V, Ramesh R, Johnsonbabu G, Premchander B, Manikandan S (2010) Study on the hydrogeochemical characteristics in groundwater, post- and pre-tsunami scenario, from Portnova to Pumpuhar, southeast coast of India. Environ Monit Assess 169:553–568. doi:10.1007/s10661-009-1196-y

    Article  Google Scholar 

  • Chidambaram S, Bala Krishna Prasad M, Manivannan R, Karmegam U, Singaraja C, Anandhan P, Prasanna MV, Manikandan S (2013) Environmental hydrogeochemistry and genesis of fluoride in groundwaters of Dindigul district, Tamilnadu (India). Environ Earth Sci 68:333–342. doi:10.1007/s12665-012-1741-9

  • Chivas AR, Andrew AS, Lyons WB, Bird MI, Donnelly TH (1991) Isotopic constraints on the origin of salts in Australian playas. 1. Sulphur. Palaeogeog Palaeoecol Palaeoclim 84:309–322

    Article  Google Scholar 

  • Cloutier V, Lefebvre R, Therrien R, Savard MM (2008) Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J Hydrol 353:294–313

    Article  Google Scholar 

  • Cushing EM, Kantrowitz IH, Taylor KR (1973) Water resources of the Delmarva Peninsula: U.S. Geo Survey Prof Paper 822, p 58

  • Das Brijraj K, Kaur P (2007) Geochemistry of surface and subsurface waters of Rewalsar lake, Mandi district, Himachal Pradesh: constraints on weathering and erosion. J Geol Soc India 69(5):1020–1030

    Google Scholar 

  • Demirel Z, Guler C (2006) Hydrogeochemical evolution of groundwater in a Mediterranean coastal aquifer, Mersin-Erdmli basin (Turkey). Environ Geol J 49:477–487

    Article  Google Scholar 

  • Fakir Y, Mernissi ME, Kreuser T, Berjami B (2002) Natural tracer approach to characterize groundwater in the coastal Sahel of Oualidia (Morocco). Environ Geol 43:197–202

    Article  Google Scholar 

  • Farnham IM, Johannesson KH, Singh AK, Hodge VF, Stetzenbach KJ (2003) Factor analytical approaches for evaluating groundwater trace element chemistry data. Anal Chim Acta 490:123–138

    Article  Google Scholar 

  • Freeze AR, Cherry JA (1979) Groundwater. Prentice-Hall, Inc., Englewood cliffs, p 604

    Google Scholar 

  • Gangai IPD, Ramachandran S (2010) The role of spatial planning in coastal management: a case study of Tuticorin coast (India). Land Use Policy 27:518–534

    Article  Google Scholar 

  • Gangopadhyay S, Gupta AS, Nachabe MH (2001) Evaluation of groundwater monitoring network by principal component analysis. Ground Water 39(2):181–191

    Article  Google Scholar 

  • Grande JA, Gonzalez A, Beltaran R, Sanchez-Rodas D (1996) Application of factor analysis to the study of contamination in the aquifer system of Ayamonte-Huelva (Spain). Ground Water 34(1):155–161

    Article  Google Scholar 

  • Gupta S, Mahato A, Roy P, Datta JK (2008) Geochemistry of groundwater, Burdwan District, West Bengal, India. Environ Geol 53:1271–1282

    Article  Google Scholar 

  • Harmann HH (1960) Modern factor analysis. University of Chicago Press, Chicago

    Google Scholar 

  • Hitchon B, Billings GK, Kollvan JE (1971) Geochemistry and origin of formation waters in the westrn Canada sedimentary basin. III. Factors controlling chemical composition. Geochim Cosmochim Acta 35:567–598

    Article  Google Scholar 

  • Jalali M (2007) Hydrochemical identification of groundwater resources and their changes under the impacts of human activity in the Chah Basin in western Iran. Environ Monit Assess 130:347–367

    Article  Google Scholar 

  • Jayakumar R, Siraz L (1996) Factor analysis in hydrogeochemistry of coastal aquifers: a preliminary study. Environ Geol J 31(3/4):174–177

    Google Scholar 

  • Jeong CH (2001) Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. J Hydrol 253:194–210

    Article  Google Scholar 

  • Jones BF, Vengosh A, Rosenthal E, Yechieli Y (1999) Geochemical investigation of groundwater quality. In: Seawater intrusion in coastal aquifers—concepts, methods and practices. Kluwer, the Netherlands, pp 51–71

  • Kaiser HF (1958) The Varimax criterion for analytic rotation in factor analysis. Psychometrika 23b:187–200

    Article  Google Scholar 

  • Karmegam U, Chidamabram S, Sasidhar P, Manivannan R, Manikandan S, Anandhan P (2010) Geochemical characterization of groundwater’s of shallow coastal aquifer in and around Kalpakkam, South India. Res J Environ Earth Sci 2(4):170–177

    Google Scholar 

  • Kim J-H, Yum B-W, Kim R-H, Koh D-C, Cheong T-J, Lee J, Chang H-W (2003a) Application of cluster analysis for the hydrogeochemical factors of saline groundwater in Kimje, Korea. Geosci J 7(4):313–322

    Article  Google Scholar 

  • Kim Y, Lee K-S, Koh D-C, Lee D-H, Lee S-G, Park W-B, Koh G-W, Woo N-C (2003b) Hydrogeochemical and isotopic evidence of groundwater salinization in a coastal aquifer: a case study in Jeju volcanic island, Korea. J Hydrol 270:282–294

    Article  Google Scholar 

  • Laaksoharju M, Skarman C, Skarman E (1999) Multivariate mixing and mass balance (M3) calculation, a new tool for decoding hydrogeochemical in formation. Appl Geochem 14:861–871

    Article  Google Scholar 

  • Lakshmanan E, Kannan R, Senthil Kumar M (2003) Major ion chemistry and identification of hydrogeochemical processes of groundwater in a part of Kancheepuram district, Tamil Nadu, India. Environ Geosci 10(4):157–166

    Article  Google Scholar 

  • Lawrence FW, Upchurch SB (1982) Identification of recharge areas using geochemical factor analysis. Groundw J 20(6):680–687

    Article  Google Scholar 

  • Liu WX, Li XD, Shen ZG, Wang DC, Wai OWH, Li YS (2003) Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary. Environ Pollut 121:377–388

    Article  Google Scholar 

  • Lowrance R, Altier LS, Newbold JD, Schnabel RR, Groffman PM, Denver JM, Correll DL, Gilliam JW, Robinson JL, Brinsfield RB, Staver KW, Lucas W, Todd AH (1997) Water quality functions of riparian forest buffers in Chesapeake Bay watersheds. Environ Manag 21:687–712

    Article  Google Scholar 

  • Madison RJ, Brunett JO (1984) Overview of the occurrence of nitrate in ground water of the United States, in National Water Summary. U.S. Geological Survey, Water Supply, p 2275

  • Marie A, Vengosh A (2001) Sources of salinity in groundwater from Jericho area, Jordan valley. Groundwater 39(2):240–248

    Article  Google Scholar 

  • Min JH, Yun ST, Kim K, Kim HS, Kim DJ (2003) Geologic controls on the chemical behavior of nitrate in riverside alluvial aquifers, Korea. Hydrol Proc 17:1197–1211

    Article  Google Scholar 

  • Mondal NC, Singh VS, Saxena VK, Prasad RK (2008) Improvement of ground water quality due to fresh water ingress in Potharlanka Island, Krishna delta, India. Environ Geol 55(3):595–603

    Article  Google Scholar 

  • Mondal NC, Singh VP, Singh VS, Saxena VK (2011) Determining the interaction between groundwater and saline water through groundwater major ions chemistry. J Hydrol 388:100–111

    Article  Google Scholar 

  • Nkotagu H (1996) Origins of high nitrate in groundwater in Tanzania. J Afr Earth Sci 21:471–478

    Article  Google Scholar 

  • Panagopoulos G, Lambrakis N, Tsolis-Katagas P, Papoulis D (2004) Cation exchange processes and human activities in unconfined aquifers. Environ Geol 46:542–552

    Article  Google Scholar 

  • Perez JMS, Antiguedad I, Arrate I, Linares CG, Morelld I (2003) The influence of nitrate leaching through unsaturated soil on groundwater pollution in an agricultural area of the Basque country: a case study. Sci Total Environ 317:173–187

    Article  Google Scholar 

  • Prasanna MV, Chidambaram S, Pethaperumal S, Srinivasamoorthy K, John Peter A, Anandhan P, Vasanthavigar M (2008) Integrated geophysical and chemical study in the lower subbasin of Gadilam River, Tamil Nadu, India. Environ Geosci 15(4):145–152

    Article  Google Scholar 

  • Prasanna MV, Chidambaram S, Shahul Hameed A, Srinivasamoorthy K (2009) Study of evaluation of groundwater in Gadilam basin using hydrogeochemical and isotope data. Environ Monit Assess 168:63–90. doi:10.1007/s10661-009-1092-5

    Article  Google Scholar 

  • Prasanna MV, Chidambaram S, Srinivasamoorthy K (2010) Statistical analysis of the hydrogeochemical evolution of groundwater in hard and sedimentary aquifers system of Gadilam river basin, South India. J King Saud Univ (Sci) 22:133–145. doi:10.1016/j.jksus.2010.04.001

    Article  Google Scholar 

  • Rajesh Reghunath, Sreedhara Murthy TR, Raghavan BR (2002) The utility of multivariate statistical techniques in hydrogeochemical studies: an example from Karnataka, India. Water Res 36:2437–2442

    Article  Google Scholar 

  • Ramachandran M, Sabarathinam C, Ulaganthan K, Paluchamy A, Sivaji M, Hameed S (2010) Mapping of fluoride ions in groundwater of Dindigul district, Tamil Nadu, India—using GIS technique. Arab J Geosci. doi:10.1007/s12517-010-0216-0

  • Ramkumar T, Venkatramanan S, Anitha Mary I, Tamilselvi Mi, Ramesh G (2010) Hydrogeochemical quality of groundwater in Vedaraniyam Town, Tamil Nadu, India. Res J Environ Earth Sci 2(1):44–48

    Google Scholar 

  • Rasouli F, KianiPouya A, Cheraghi SAM (2012) Hydrogeochemistry and water quality assessment of the Kor-Sivand Basin, Fars province, Iran. Environ Monit Assess 184:4861–4877. doi:10.1007/s10661-011-2308-z

    Article  Google Scholar 

  • Razack M, Dazy J (1990) Hydrochemical characterization of groundwater mixing in sedimentary and metamorphic reservoirs with combined use of piper’s principal and factor analysis. J Hydrol 114:371–393

    Article  Google Scholar 

  • Richter BC, Kreitler CW (1993) Geochemical techniques for identifying sources of ground-water salinization. CRC, Boca Raton, p 258

    Google Scholar 

  • Saxena VK, Mondal NC, Singh VS (2004) Identification of seawater ingress using Sr and B in Krishna delta. Curr Sci India 86(4):586–590

    Google Scholar 

  • Schoeller H (1965) Qualitative evaluation of groundwater resources. In: Methods and techniques of groundwater investigations and development. UNESCO, pp 54–83

  • Schot PP, Van der Wal J (1992) Human impact on regional groundwater composition through intervention in natural flowpatterns and changes in land use. J Hydrol 134:297–313

    Article  Google Scholar 

  • Selvin Pitchaikani J, Ananthan G, Sudhakar M (2010) Studies on the effect of coolant water effluent of Tuticorin thermal power station on hydro biological characteristics of Tuticorin coastal waters, South East Coast of India. Curr Res J Biol Sci 2(2):118–123

    Google Scholar 

  • Senthilkumar G, Ramanathan AL, Nainwal HC, Chidambaram S (2008) Evaluation on the hydrogeochemistry of groundwater using factor analysis in the Cuddalore coastal region, Tamilnadu, India. Indian J Mar Sci (37) 2

  • Seyhan EV, Van De Caried AA, Engelen GB (1985) Multivariate analysis and interpretation of the hydrochemistry of a dolomite reef aquifers, Northern Italy. Water Res 21:1010–1024

    Google Scholar 

  • Singaraja C (2011) Impact of tidal variation in shallow coastal groundwater of Cuddalore district, published M.Phil, thesis, 1-147. Department of Geology, Annamalai University

  • Singaraja C, Chidambaram S, Prasanna MV, Paramaguru P, Johnsonbabug TC, Thilagavathi R (2012a) A study on the behaviour of the dissolved oxygen in the shallow coastal wells of Cuddalore District, Tamilnadu, India. Water Qual Expo Health 4:1–16. doi:10.1007/s12403-011-0058-3

    Article  Google Scholar 

  • Singaraja C, Chidambaram S, Anandhan P, Prasann MV, Thivya C, Thilagavathi R (2012b) A study on the status of fluoride ion in groundwater of coastal hard rock aquifers of south India. Arab J Geosci. doi:10.1007/s12517-012-0675-6

  • Smith SJ, Andres R, Conception E, Lurz J (2004) Sulfur dioxide emissions: 1850-2000 (JGCRI Report. PNNL-14537)

  • Soares dos Santos J, Oliveira E, Bruns RE, Gennari RF (2004) Evaluation of the salt accumulation process during inundation in water resource of Contas river basin (Bahia–Brasil) applying principal component analysis. Water Res 38:1579–1585

    Article  Google Scholar 

  • Srinivasamoorthy K, Chidambaram S, Anandhan P, Vasudevan S (2005) Application of statistical analysis of the hydrogeochemical study of groundwater in hard rock terrain, Salem District, Tamilnadu. J Geochem 20:181–190

    Google Scholar 

  • Srinivasamoorthy K, Chidambaram S, Prasanna MV, Anandhan P (2007) Control of rock weathering on the chemical composition of groundwater in Salem District, Tamilnadu, India. Int J Phys Sci 19(3):367–378

    Google Scholar 

  • Srinivasamoorthy K, Chidambaram M, Prasanna MV, Vasanthavigar M, John Peter A, Anandhan P (2008) Identification of major sources controlling Groundwater Chemistry from a hard rock terrain: a case study from Mettur taluk, Salem district, Tamilnadu, India. J Earth Syst Sci 117(1):49–58

    Article  Google Scholar 

  • Srinivasamoorthy K, Chidambaram S, Vasanthavihar M (2009) Application of multivariate statistical analysis in elucidation of hydrogeochemical data: a case study. Int J Ecol Econ Stat 14(S09)

  • Srivastava A (2005) Aquifer geometry, basement-topography and groundwater quality around Ken Graben, India. J Spatial Hydrol 2(2):1–7

    Google Scholar 

  • Stetzenbach KJ, Hodge VF, Guo C, Farnham IM, Johannesson KH (2001) Geochemical and statistical evidence of deep carbonate groundwater within overlying volcanic rock aquifers/aquitards of southern Neveda, USA. J Hydrol 243:254–271

    Article  Google Scholar 

  • Stigter TY, Ooijen SPJV, Post VEA, Appello CAJ, Dill AMMC (1998) A hydrogeological and hydrochemical explanation of the groundwater composition under irrigated land in a Mediterranean environment, Algarve, Portugal. J Hydrol 208:262–279

    Article  Google Scholar 

  • Subba Rao C, Subba Rao NV, Chandu SN (1995) Characterisation of groundwater contamination using factor analysis. Environ Geol 28(4):175–180

    Article  Google Scholar 

  • Subba Rao N, Surya Rao P, Venktram Reddy G, Nagamani M, Vidyasagar G, Satyanarayana NLVV (2012) Chemical characteristics of groundwater and assessment of groundwater quality in Varaha River Basin, Visakhapatnam District, Andhra Pradesh, India. Environ Monit Assess 184:5189–5214. doi:10.1007/s10661-011-2333-y

    Article  Google Scholar 

  • Taheri Tizro A, Voudouris KS (2008) Groundwater quality in the semi-arid region of the Chahardouly basin, West Iran. Hydrol Process 22:3066–3078

    Article  Google Scholar 

  • Tao S (1998) Factor score mapping of soil trace element contents for the Shenzhen area. Water Air Soil Pollut 102:415–425

    Article  Google Scholar 

  • Thilagavathi R, Chidambaram S, Prasanna MV, Thivya C, Singaraja C (2012) A study on groundwater geochemistry and water quality in layered aquifers system of Pondicherry region, southeast India. Appl Water Sci. doi:10.1007/s13201-012-0045-2

  • Usunoff EJ, Guzmán-Guzmán A (1989) Multivariate analysis in hydrochemistry: an example of the use of factor and correspondence analyses. Ground Water 27:27–34

    Article  Google Scholar 

  • Veeraputhiran V, Alagumuthu G (2010) A report on fluoride distribution in drinking water. Int J Environ Sci. 1(4)

  • Vega M, Pardo R, Barrado E, Deban L (1998) Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res 32:3581–3592

    Article  Google Scholar 

  • Walker BR, Jolly LD, Cook PG (1991) A new chloride leaching approach to the estimation of diffuse recharge following a change in land use. J Hydrol 128:49–67

    Article  Google Scholar 

  • Zilberbrand M, Rosenthal E, Shachnai E (2001) Impact of urbanization on hydrochemical evolution of groundwater and on unsaturated-zone gas composition in the coastal city of Tel Aviv, Israel. J Contam Hydrol 50:175–208

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Prasanna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singaraja, C., Chidambaram, S., Prasanna, M.V. et al. Statistical analysis of the hydrogeochemical evolution of groundwater in hard rock coastal aquifers of Thoothukudi district in Tamil Nadu, India. Environ Earth Sci 71, 451–464 (2014). https://doi.org/10.1007/s12665-013-2453-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2453-5

Keywords

Navigation