Skip to main content
Log in

Modelling of fractured carbonate reservoirs: outline of a novel technique via a case study from the Molasse Basin, southern Bavaria, Germany

  • Special Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Fluid flow in low-permeable carbonate rocks depends on the density of fractures, their interconnectivity and on the formation of fault damage zones. The present-day stress field influences the aperture hence the transmissivity of fractures whereas paleostress fields are responsible for the formation of faults and fractures. In low-permeable reservoir rocks, fault zones belong to the major targets. Before drilling, an estimate for reservoir productivity of wells drilled into the damage zone of faults is therefore required. Due to limitations in available data, a characterization of such reservoirs usually relies on the use of numerical techniques. The requirements of these mathematical models encompass a full integration of the actual fault geometry, comprising the dimension of the fault damage zone and of the fault core, and the individual population with properties of fault zones in the hanging and foot wall and the host rock. The paper presents both the technical approach to develop such a model and the property definition of heterogeneous fault zones and host rock with respect to the current stress field. The case study describes a deep geothermal reservoir in the western central Molasse Basin in southern Bavaria, Germany. Results from numerical simulations indicate that the well productivity can be enhanced along compressional fault zones if the interconnectivity of fractures is lateral caused by crossing synthetic and antithetic fractures. The model allows a deeper understanding of production tests and reservoir properties of faulted rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agosta F (2006) Deformation mechanisms, architecture, and petrophysical properties of large normal faults in platform carbonates and their role in the release of CO2from Earth’s interior in central Italy. PhD thesis, Stanford University

  • Agosta F, Prasad M, Aydin A (2007) Physical properties of carbonate fault rocks, Fucino basin (Central Italy): implications for fault seal in platform carbonates. Geofluids 7(1):19–32. doi:10.1111/j.1468-123.2006.00158.x

    Google Scholar 

  • Anderson E (1951) The dynamics of faulting and dyke formation with application to Britain. Oliver & Boyd, Edinburg

    Google Scholar 

  • Anderson TR, Fairley JP (2008) Relating permeability to the structural setting of a fault-controlled hydrothermal system in southeast Oregon, USA. J Geophys Res 113(B5):B05, 402. doi:10.1029/2007JB004962

  • Birner J, Fritzer T, Jodocy M, Schneider M, Stober I (2009) Aufbau eines geothermischen Informationssystems für Deutschland. Final Report, LIAG-Bericht, ArchivNr. 0128452, Hannover, chap Molassebecken

  • Birner J, Mayr C, Lutz T, Schneider M, Baumann T, Winkler A (2011) Hidrochemie und Genese der tiefen Grundwässer des Malmaquifers im Bayrischen Teil des süddeutschen Molassebeckens. Z Geol Wiss 39:291–308

    Google Scholar 

  • Byerlee J (1978) Friction of rocks. Pageoph 116:615–626

    Article  Google Scholar 

  • Byerlee J (1990) Friction, overpressure and fault normal compression. Geophys Res Lett 17(12):2109–2112. doi:10.1029/GL017i012p02109

    Google Scholar 

  • Cacas MC, Daniel JM, Letouzey J (2001) Nested geological modelling of naturally fractured reservoirs. Petrol Geosci 7(S):S43–S52. doi:10.1144/petgeo.7.S.S43, http://pg.lyellcollection.org/content/7/S/S43.abstract

    Google Scholar 

  • Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24(11):1025–1028. doi:10.1130/0091-7613(1996)024h1025:FZAAPSi2.3.CO;2, http://geology.gsapubs.org/content/24/11/1025.abstract

    Google Scholar 

  • Cheng S-W, Dey TK, Shewchuck JR (2012) Delaunay mesh generation. CRC Press, Boca Raton

  • Clauser C, Koch A, Hartmann A, Rath V, Mottaghy D, Pechnig R (2006) Erstellung statistisch abgesicherter thermischer und hydraulischer Gesteinseigenschaften für den flachen und tiefen Untergrund in Deutschland Phase 1—Westliche Molasse und nördlich angrenzendes Süddeutsches Schichtstufen-land. BMU-Projekt FKZ 0329985 (Final Report)

  • Davatzes N, Aydin A (2005) Distribution and nature of fault architecture in a layered sandstone and shale sequence: an example from the Moab fault, Utah. In: Sorkhabi R, Tsuji Y (eds) Faults, fluid flow, and petroleum traps. AAPG Memoir, vol 85, pp 153–180

  • Dietrich P, Helmig R, Sauter M, Hötzl H, Köngeter J, Teutsch G (eds) (2005) Flow and transport in fractured porous media. Springer, Berlin

  • Energiegewinnung BGH (2010) Bayerischer Geothermieatlas—Hydrothermale Energiegewinnung. Bayerisches Staatsministerium für Wirschaft, Infrastruktur, Verkehr und technologie

  • Ferrill DA, Morris AP, McGinnis RN (2009) Crossing conjugate normal faults in field exposures and seismic data. AAPG Bull 93(11):1471–1488. doi:10.1306/06250909039, http://aapgbull.geoscienceworld.org/content/93/11/1471.abstract

  • Frisch H, Huber B (2000) Ein Hydrogeologisches Modell und der Versuch einer Bilanzierung des Thermalwasservorkommens für den Malmkarst im Süddeutschen und im angrenzenden Oberösterreichischen Molassebecken. Hydrogeologie und Umwelt 20(25):43

    Google Scholar 

  • Fritzer T (2010) Bayerischer Geothermieatlas—hydrothermale Energiegewinnung: Technik, wirtschaftliche Aspekte, Risiken, hydrothermale Grundwasserleiter in Bayern, Untergrundtemperaturen in Bayern. Bayern, Staatsministerium für Wirtschaft Infrastruktur Verkehr und Technologie. http://books.google.de/books?id=wGAnygAACAAJ

  • Heidbach O, Tingay M, Barth A, Reinecker J, Kurfeß D, Müller B (2010) Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics 482:3–15. http://www.sciencedirect.com/science/article/pii/S0040195109004132

    Google Scholar 

  • Hickman S, Zoback M, Benoit R (1998) Tectonic controls on reservoir permeability in the Dixie Valley, Nevada, geothermal field. In: Proceedings of the twenty-third workshop on geothermal reservoir engineering. Standford University, Standford

  • Homuth S, Götz AE, Sass I (2011) Outcrop analogue studies for reservoir characterization and prediction of deep geothermal systems in the Molasse Basin, Germany. EGU General Assembly, Wien

  • Hyne NJ (2001) Nontechnical guide to petroleum geology, exploration, drilling and production, 2nd edn. Pennwell Books, Tulsa

    Google Scholar 

  • Jaeger J, Cook N, Zimmerman R (2007) Fundamentals of rock mechanics. Blackwell, Oxford

    Google Scholar 

  • Kalbacher T, Wang W, McDermott C, Kolditz O, Taniguchi T (2005) Development and application of a cad interface for fractured rock. Environ Geol 47(7):1017–1027. 10.1007/s00254-005-1236-z

    Google Scholar 

  • Kolditz O, Bauer S, Bilke L, Böttcher N, Delfs J, Fischer T, Görke U, Kalbacher T, Kosakowski G, McDermott C, Park C, Radu F, Rink K, Shao H, Shao H, Sun F, Sun Y, Singh A, Taron J, Walther M, Wang W, Watanabe N, Wu Y, Xie M, Xu W, Zehner B (2012) OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci 67(2):589–599. 10.1007/s12665-012-1546-x

    Google Scholar 

  • Kuhlemann J, Kempf O (2002) Post-eocene evolution of the North Alpine Foreland Basin and its response to Alpine tectonics. Sediment Geol 152(12):45–78. doi:10.1016/S0037-0738(01)00285-8, http://www.sciencedirect.com/science/article/pii/S0037073801002858

  • Marshall B, Eppstein D (1992) Mesh generation and optimal triangulation. In: Du DZ, Hwang F (eds) Computing on euclidean geometry. World Scientific Publishing, Singapore, pp 23–90

  • Moeck I, Schandelmeier H, Holl HG (2009) The stress regime in a Rotliegend reservoir of the Northeast German Basin. Int J Earth Sci 98:1643–1654. doi:10.1007/s00531-008-0316-1

    Google Scholar 

  • Müller C, Siegesmund S, Blum P (2010) Evaluation of the representative elementary volume (REV) of a fractured geothermal sandstone reservoir. Environ Earth Sci 61(8):1713–1724. doi:10.1007/s12665-010-0485-7

    Google Scholar 

  • Nishida A (2010) Experience in developing an open source scalable software infrastructure in Japan. In: Taniar D, Gervasi O, Murgante B, Pardede E, Apduhan B (eds) Computational science and its applications ICCSA 2010, Lecture Notes in Computer Science, vol 6017, Springer, Berlin, pp 448–462. doi:10.1007/978-3-642-12165-4_36

  • O’Sullivan MJ, Pruess K, Lippmann MJ (2001) State of the art of geothermal reservoir simulation. Geothermics 30(4):395–429

    Article  Google Scholar 

  • Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation, and confirmation of numerical models in the earth sciences. Science 263:641–646. doi:10.1126/science.263.5147.641

    Article  Google Scholar 

  • Peska P, Zoback MD (1995) Compressive and tensile failure of inclined well bores and determination of in situ stress and rock strength. J Geophys Res 100(B7):12791–12811. doi:10.1029/95JB00319

    Google Scholar 

  • Reinecker J, Tingay M, Müller B, Heidbach O (2010) Present-day stress orientation in the Molasse basin. Tectonophysics 482:129–138. http://www.sciencedirect.com/science/article/pii/S0040195109004119

    Google Scholar 

  • Schultz R (2007) Abschätzung des fündigkeitsrisikos erfahrungen mit projekten. geothermische anforderungen definition:fündigkeitsrisiko erfolgswahrsheinlichkit beispiel unterhaching ausblick. Tech. rep., 18. Fachtagung der SVG, Zürich

  • Segura JM, Carol I (2004) On zero-thickness interface elements for diffusion problems. Int J Numer Anal Meth Geomech 28(9):947–962

    Article  Google Scholar 

  • Si H (2010) Constrained Delaunay tetrahedral mesh generation and refinement. Finite Elem Anal Des 46(1):33–46

    Article  Google Scholar 

  • Turner A (2006) Challenges and trends for geological modelling and visualisation. Bull Eng Geol Environ 65:109–127. doi:10.1007/s10064-005-0015-0

    Google Scholar 

  • Wang W, Kolditz O (2007) Object-oriented finite element analysis of thermo-hydro-mechanical (THM) problems in porous media. Int J Numer Meth Eng 69(1):162–201

    Article  Google Scholar 

  • Watanabe N, Wang W, McDermott C, Taniguchi T, Kolditz O (2010) Uncertainty analysis of thermo-hydro-mechanical coupled processes in heterogeneous porous media. Comput Mech 45(4):263–280. doi:10.1007/s00466-009-0445-9

    Google Scholar 

  • Watanabe N, Wang W, Taron J, Görke UJ, Kolditz O (2012) Lower-dimensional interface elements with local enrichment: application to coupled hydro-mechanical problems in discretely fractured porous media. Int J Numer Meth Engng 90(8):1010–1034. doi:10.1002/nme.3353

    Google Scholar 

  • Wibberley CAJ (2008) The internal structure of fault zones: implications for mechanical and fluid-flow properties. Special Publication, Geological Society of London. http://books.google.de/books?id=ce42jBktYGsC

  • Wolfgramm M, Obst K, Brandes J, Koch R, Raubbach K, Thorwart K (2009) Produktivitätsprognosen geothermischer aquifere in Deutschland. In: Der Geothermiekongress 2009 conference proceedings

  • Zoback M (2007) Reservoir geomechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Matthias Klinkmüller for setting up and providing the structural geological PETREL model of the Mauerstetten reservoir. Personal credits go to Wasiu Sonnibare for sharing his expertise while carrying out the time-depth conversion of the geological model and to Dr. David Bruhn for proofreading some critical parts of the manuscript. The structural geological data and the hydraulic setting have been investigated as a part of an ongoing project (0325267B “Geothermie Allgäu 2.0”) which has been funded by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU). Lastly, a special acknowledgement to the GeoEn project (Grant 03G0671 A/B/C) for providing a working platform cross-linking the different scientific fields, e.g. exploration, reservoir engineering, and environmental informatics. Finally, the authors would like to acknowledge three anonymous reviewers for their helpful criticisms which help improving the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Cacace.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cacace, M., Blöcher, G., Watanabe, N. et al. Modelling of fractured carbonate reservoirs: outline of a novel technique via a case study from the Molasse Basin, southern Bavaria, Germany. Environ Earth Sci 70, 3585–3602 (2013). https://doi.org/10.1007/s12665-013-2402-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2402-3

Keywords

Navigation