Skip to main content

Rough evaluation of the water-inflow discharge in abandoned mining tunnels using a simplified water balance model: the case of the Cogne iron mine (Aosta Valley, NW Italy)


One of the most complex hydrogeological problems in the design and maintenance of drainage systems in abandoned mining sites is quantifying the maximum water infiltration and, therefore, the amount that is potentially drainable by the tunnels. This problem is compounded when water-inflow data are limited or lacking. The aim of the study was to present a single but reliable model for making this evaluation; this model was applied to the case history of the abandoned Cogne iron ore mining complex (Western Alps, Aosta Valley Region, NW Italy). The study focused on quantifying the amount of water infiltrating into the mine drifts, using a water balance model in a Geographic Information System (GIS) environment. In the model, five different infiltration scenarios were calculated, including a detailed analysis of rainfall data, snow density and thickness (Snow Water Equivalent calculation), and melting periods. The maximum water discharge that could affect the mine tunnels was, therefore, determined under several scenarios of normal precipitation conditions and during heavy rainfall, including the case of the Cogne valley flood in October 2000, used as a reference for the limit conditions. Taking into account the various approximations considered, the results can be considered a good indication of the magnitude of the total amount of water that should be drained out through abandoned mine drifts and in the drainage network during implementation of final closure of the mine.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  • Amstutz A (1962) Notice pour une carte géologique de la vallée de Cogne et de quelques espaces au sud d’Aoste. Archives Sci, Genève 15:1–104 (in French)

    Google Scholar 

  • APAT (2006) Agenzia per la protezione dell’ambiente e per i servizi tecnici: Gli indicatori del clima in Italia nel 2005 Anno I. pp 184 (In Italian)

  • Attanayake PM, Waterman MK (2006) Identifying environmental impacts of underground construction. Hydrogeol J 14(7):1160–1170

    Article  Google Scholar 

  • Bear J, Zalavsky D, Irmay S (1968) Hydraulics of wells: physical principles of water percolation and seepage Chap. 13. UNESCO, Paris, pp 395–434

    Google Scholar 

  • Berkowitz B (1994) Modeling flow and contaminant transport in fractured media. In: Corapcioglu MY (ed) Advances in porous media Chap 6. Elsevier, Amsterdam, pp 397–451

    Google Scholar 

  • Bethaz A (1972) La miniera di magnetite di Cogne in Val d’Aosta. Boll Ass Min Subalpina 9:93–101 (in Italian)

    Google Scholar 

  • Blanchet J, Marty C, and Lehning M (2009) Extreme value statistics of snowfall in the Swiss Alpine region. Water Resources Research 45, W05424. doi:10.1029/2009WR007916

  • Boni C, Bono P, Capelli G (1982) Valutazione quantitativa dell’infiltrazione efficace in un bacino dell’Italia centrale: confronto con analoghi bacini rappresentativi di diversa litologia. Geologia Applicata e Idrogeologia 17:437–452 (in Italian)

    Google Scholar 

  • Castello P (1981) Inventario delle magnetizzazioni a magnetite, ferro-rame e manganese del complesso piemontese dei calcescisti con pietre Verdi in valle d’Aosta. Ofioliti 6:5–46 (in Italian)

    Google Scholar 

  • Coli N, Pranzini G, Alfi A, Boerio V (2008) Evaluation of rock-mass permeability tensor and prediction of tunnel inflows by means of geostructural surveys and finite element seepage analysis. Eng Geol 101:174–184. doi:101016/j.enggeo.2008.05.002

    Article  Google Scholar 

  • Compagnoni R, Elter G, Fiora L, Natale P, Zucchetti S (1979) Nuove osservazioni sul giacimento di magnetite di Cogne in Valle d’Aosta. Rend Soc It Min Petr 35:755–766 (in Italian)

    Google Scholar 

  • Compagnoni R, Elter G, Fiora L, Natale P, Zucchetti S (1981) Magnetite deposits in serpentinized lherzolites from the ophiolitic belt of the Western Alps, with special reference to the Cogne deposit (Aosta Valley). In: Proceedings of the Intern Symp Mafic Ultramafic Complexes, Athens 9–11 October 1980, 3: 376–394

  • Custodio E (1983) Hidráulica de captaciones de agua subterránea. In: Custodio E, Llamas MR (eds) Hidrología Subterránea. Ed. Omega, Barcelona, pp 614–695 (in Spanish)

    Google Scholar 

  • Dal Piaz GV, Pennacchioni G, Tartarotti P, Carraro F, Gianotti F, Monopoli B, Schiavo A (2010) Note Illustrative della Carta Geologica d’Italia alla scala 1:50.000 foglio 091 Chatillon, ISPRA (in Italian)

  • de la Vergne JN (2003) Hard Rock Miner’s Handbook, 3rd edn. McIntosh Engineering, Tempe, p 262

    Google Scholar 

  • De Vita P, Allocca V, Manna F, Fabbrocino F (2012) Coupled decadal variability of the North Atlantic Oscillation, regional rainfall and karst spring discharges in the Campania region (southern Italy). Hydrol Earth Syst Sci 16:1389–1399

    Article  Google Scholar 

  • Dematteis A, Torri R, Looser M (2007) Water Resources Management in Tunneling: insights in the decision-making process to improve tunnels environmental sustainability”. In: Proc XXXV IAH Congress, Groundwater and Ecosystems, Lisbon 17–21 September 2007, pp 8

  • Elter G (1960) La zona Pennidica dell’alta e media valle d’Aosta e le unità limitrofe. Mem Ist Geol Univ Padova, pp 22 (in Italian)

  • Farinet P. A. (1922) La minera di Cogne: i precursori, Aoste, Imp. E. Duc (in Italian)

  • Fernàndez-Rubio R, Fernandez Lorca D (1993) Mine Water drainage. Mine Water Environ 12:107–130

    Google Scholar 

  • Golder Associates (2010) Miniera di Cogne. Località Costa del Pino e Valle Licony. Studio geologico dei fenomeni di instabilità. Report, pp 71 (in Italian—Courtesy Regione Autonoma Valle d’Aosta)

  • Goodman RD, Moye SA, Javandel I (1965) Groundwater inflows during tunnel driving. Eng Geol 2:39–56

    Google Scholar 

  • INAP (2012) Global Acid Rock Drainage (GARD) Guide,

  • Kovàcs G, Molnar G (1974) Determination of snow water equivalent and snowmelt thickness by snow cover data. Hydrol Sci Bull 19:435–447

    Google Scholar 

  • Li X, Cao L, Zhao X (2011) Assessment of potential impact of tunneling on the groundwater in Epi-Fissure-Karst-Zone and ecological environment. Environ Earth Sci. doi:10.1007/s12665-011-1306-3

  • Molinero J, Samper J, Juanes R (2002) Numerical modelling of the transient hydrogeological response produced by tunnel construction in fractured bedrock. Eng Geol 64(4):369–386

    Article  Google Scholar 

  • Perello P, Venturini G, Delle Piane L, Dematteis A (2007) Ground water inflows in tunnels excavated in faulted rock mass. Felsbau 25(4):28–34

    Google Scholar 

  • Perrochet P (2005) Confined flow into a tunnel during progressive drilling: an analytical solution. Ground Water 43(6):943–946

    Google Scholar 

  • Raposo JR, Molinero J, Dafont J (2010) Quantitative evaluation of hydrogeological impact produced by tunnel construction using water balance models. Eng Geol 116:323–332. doi:10.1016/j.enggeo.2010.09.014

    Article  Google Scholar 

  • RAVA (2010a) Regione Autonoma Valle d’Aosta Digital Elevation Model. Department of Land, Environment and Public works, Aosta Valley, Italy (in Italian),

  • RAVA (2010b) Regione Autonoma Valle d’Aosta Meteorological data. Department of Land, Environment and Public works, Aosta Valley, Italy (in Italian),

  • Repubblica Italiana (1993) D.P.R. 26 agosto 1993, n. 412 (1) Regolamento recante norme per la progettazione, l’installazione, l’esercizio e la manutenzione degli impianti termici degli edifici ai fini del contenimento dei consumi di energia, in attuazione dell’art. 4, comma 4, della L. 9 gennaio 1991, n. 10 (in Italian)

  • Sammarco O (1986) Spontaneous Inrushes of Water in Underground Mines. Int J Mine Water 5(2):29–42

    Article  Google Scholar 

  • Santoro M (1970) Sulla applicabilità della formula di Turc per il calcolo della evapotraspirazione effettiva in Sicilia. In: Proceedings of the I International Conference on Groundwater, I.A.H., Palermo (in Italian)

  • Stella A (1913) La miniera di Cogne. Ed. Barabino A, Genova, p 21

    Google Scholar 

  • Stella A (1921) Le miniere di ferro dell’Italia. I Congr Min Naz, Roma, pp 426 (in Italian)

  • Sui W, Liu J, Yang S, Chen Z, Hu Y (2011) Hydrogeological analysis and salvage of a deep coalmine after a groundwater inrush. Environ Earth Sci 62:735–749. doi:10.1007/s12665-010-0562-y

    Article  Google Scholar 

  • Thut AS (2006) Snow Density and its Underlying Variables. Atmospheric and Oceanic Sciences. University of Wisconsin-Madison. Orographic Storms Laboratory (AOS 401), 1, 1: 1–7

  • van Geldermalsen LA (2004) Environmental aspects in tunnel design. Safe & Reliable Tunnels. Innovative European Achievements. First International Symposium, Prague 2004, 199–210

  • van Geldermalsen LA, van Dam-de Groot A (2002) Environmental aspects of Tunnels.Identification and quantification of environmental effects. DARTS055 report, pp 63

  • Wolkersdorfer C (2008) Water management at abandoned flooded underground mines-fundamentals-tracer tests-modelling-water treatment. Springer, Heidelberg, p 466

    Google Scholar 

  • Younger PL, Banwart SA, Hedin RS (2002) Mine Water: Hydrology, Pollution, Remediation. Kluwer Academic Press, The Netherlands

    Google Scholar 

  • Zhu WC, Wei CH (2011) Numerical simulation on mining-induced water inrushes related to geologic structures using a damage-based hydromechanical model. Environ Earth Sci 62:43–54. doi:10.1007/s12665-010-0494-6

    Article  Google Scholar 

Download references


Servizio cave, miniere e sorgenti of Regione Autonoma Valle d’Aosta (Quarries, mines and springs Service of the Regione Autonoma Valle d’Aosta) is greatly acknowledged for the supply of Cogne mine plans and for the permission of publication of the data used in this paper. Fintecna staff are gratefully acknowledged for their help with site surveys.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Stefano Lo Russo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lo Russo, S., Gnavi, L., Peila, D. et al. Rough evaluation of the water-inflow discharge in abandoned mining tunnels using a simplified water balance model: the case of the Cogne iron mine (Aosta Valley, NW Italy). Environ Earth Sci 70, 2753–2765 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Inflow
  • Water balance model
  • Rainfall
  • Snow water equivalent
  • Mine closure