Skip to main content

Advertisement

Log in

Groundwater recharge in semi-arid carbonate aquifers under intensive use: the Estepa Range aquifers (Seville, southern Spain)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Quantifying groundwater recharge in carbonate aquifers located in semi-arid regions and subjected to intensive groundwater use is no easy task. One reason is that there are very few available methods suitable for application under such climatic conditions, and moreover, some of the methods that might be applied were originally designed with reference to non-carbonate aquifers. In addition, it is necessary to take into account the fact that, in any given aquifer, groundwater recharge is modified by the groundwater exploitation. Here we focus on four methods selected to assess their suitability for estimating groundwater recharge in carbonate aquifers affected by intensive exploitation. The methods were applied to the Estepa Range aquifers of Seville, southern Spain, which are subjected to different degrees of exploitation. Two conventional methods were used: chloride mass balance and daily soil–water balance. These results were compared with the results obtained by means of two non-conventional methods, designed for application to the carbonate aquifers of southern Spain: the APLIS and ERAS methods. The results of the different methods are analogous, comparable to those obtained in nearby non-exploited carbonate aquifers, confirming their suitability for use with carbonate aquifers in either natural or exploited regimes in a semi-arid climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aguilera H, Murillo JM (2009) The effect of possible climate change on natural groundwater recharge based on a simple model: a study of four karstic aquifers in SE Spain. Environ Geol 57:963–974

    Article  Google Scholar 

  • Ahr WM, Allen D, Boyd A, Bachman HN, Smitthson T, Clerk EA, Gzara K, Hassall JK, Murty CRK, Zubari H, Ramamoorthy R (2005) Confronting the carbonate conudrum. Oildfield Rev 17:20–43

    Google Scholar 

  • Alcalá FJ, Custodio E (2008) Atmospheric chloride deposition in continental Spain. Hydrol Process 22:3636–3650

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper nº 56, Roma

  • Andreo B, Vías J, Durán JJ, Jiménez P, López-Geta JA, Carrasco F (2008) Methodology for groundwater recharge assessment in carbonate aquifers: application to pilot sites in southern Spain. Hydrogeol J 16:911–925

    Article  Google Scholar 

  • Andreu JM, Alcalá FJ, Vallejos A, Pulido-Bosch A (2011) Recharge to mountainous carbonated aquifers in SE Spain: different approaches and new challenges. J Arid Environ 75(12):1262–1270

    Google Scholar 

  • Bakalowicz M (2005) Karst groundwater: a challengue for a new resources. Hydrogeol J 13:148–160

    Article  Google Scholar 

  • Beekman HE, Xu Y (2003) Review of groundwater recharge estimation in arid and semiarid Southern Africa Pages. In: Beekman HE, Xu Y (eds) Groundwater recharge estimation in South Africa. UNESCO, Paris, pp 3–18

    Google Scholar 

  • Bhuiyan C, Singh RP, Flugel WA, Fluegel WA (2009) Modelling of ground water recharge-potential in the hard-rock Aravalli terrain, India: a GIS approach. Environ Earth Sci 59(4):929–938

    Article  Google Scholar 

  • Bredehoeft JD, Papadopoulos SS, Cooper HH Jr (1982) The water budget myth, scientific basis of water resource management. National Academy Press, Washington, DC, pp 51–57

  • Bredenkamp DB, Xu Y (2003) Perspectives on recharge estimation in dolomitic aquifers in South Africa Pages. In: Beekman HE, Xu Y (eds) Groundwater recharge estimation in South Africa. UNESCO, Paris, pp 65–79

    Google Scholar 

  • Contreras S, Boer M, Alcalá FJ, Domingo F, García M, Pulido-Bosch A, Puigdefábregas J (2008) An ecohydrological modelling approach for assessing long-term recharge rates in semiarid karstic landscapes. J Hydrol 351:42–57

    Article  Google Scholar 

  • Cruz-Sanjulián J (1974) Estudio geológico del sector Cañete La Real-Teba-Osuna (Cordillera Bética, región occidental). Tesis Doctoral. Universidad de Granada, Granada

  • Custodio E (1997) Evaluación de la recarga por la lluvia mediante métodos ambientales químicos, isotópicos y térmicos. In: Custodio E, Llamas MR, Samper J (eds) La evaluación de la recarga a los acuíferos en la planificación hidrológica. ITGE, Madrid (Spain), pp 83–109

    Google Scholar 

  • Custodio E, Llamas MR, Samper J (1997) La evaluación de la recarga a los acuíferos en la planificación hidrológica. ITGE, Madrid

    Google Scholar 

  • Custodio E, Llamas MR, Hernández-Mora N, Martinez-Cortina L, Martinez-Santos P (2009) Chapter 14. Issues related to intensive groundwater use. In: Garrido A, Llamas MR (eds) Water policy in Spain. CRC Press, Cleveland, OH, p 246

    Google Scholar 

  • Dassi L (2010) Use of chloride mass balance and tritium data for estimation of groundwater recharge and renewal rate in an unconfined aquifer from North Africa: a case study from Tunisia. Environ Earth Sci 60(4):861–871

    Article  Google Scholar 

  • de Vries JJ, Simmers I (2002) Groundwater recharge: an overview of processes and challenges. Hydrogeol J 10:5–17

    Article  Google Scholar 

  • Domingo F, Sánchez G, Moro MJ, Brenner AJ, Puigdefábregas J (1998) Measurement and modelling of rainfall interception by three semiarid canopies. Agric For Meteorol 91:275–292

    Article  Google Scholar 

  • Eriksson E, Khunakasem V (1969) Chloride concentrations in groundwater, rechargue rate and rate of deposition of chloride in the Israel coastal plain. J Hydrol 7:178–179

    Article  Google Scholar 

  • Flint AL, Flint LE, Kwicklis EM, Fabryka-Martin JT, Bodvarsson GS (2002) Estimating recharge at Yucca Mountain. Nevada, USA: comparasion of methods. Hydrogeol J 10:180–204

    Article  Google Scholar 

  • Foster SDD, Bath AH, Farr JL, Lewis WJ (1982) The likelihood of active groundwater recharge in the Bostwana Kalahari. J Hydrol 7:178–197

    Google Scholar 

  • Hantush MS, Jacob CE (1955) Non-steady radial flow in an infinite leaky aquifer. Trans Am Geophys Union 36(1):95–100

    Article  Google Scholar 

  • Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:91–109

    Article  Google Scholar 

  • Hendrickx J, Walker G (1997) Recharge from precipitation. In: Simmers I (ed) Recharge of phreatic aquifers in (Semi-) arid areas. Balkema, Rotterdam, pp 19–98

    Google Scholar 

  • Iglesias-López A (1984) Diseño de un modelo para el estudio de descargas de acuíferos. Modelo Meda. Boletín Geológico y Minero 95:52–57

    Google Scholar 

  • IGME (2006a) Apoyo a la actualización de los conocimientos y explotación sostenible del acuífero de la Sierra de Estepa (Sevilla). Instituto Geológico y Minero de España, Sevilla

    Google Scholar 

  • IGME (2006b) Estudio mediante sondeos electromagnéticos en el dominio de tiempos con fines hidrogeológicos en Estepa (Sevilla). Instituto Geológico y Minero de España, Sevilla

    Google Scholar 

  • Kalantari N, Bestland E, Jalalvand A (2009) Alluvial aquifer recharge enhanced by a natural dam: feasibility assessment based on multidisciplinary characterization (Khuzestan, Southwest Iran). Environ Earth Sci 59(1):51–61

    Article  Google Scholar 

  • Kinzelbach W, Aeschbach W, Alberich C, Goni LB, Beyerle U, Brunner P, Chiang WH, Rueedi J, Zoellman K (eds) (2002) A survey of methods for groundwater recharge in arid and semiarid regions. United Nations Environment Programme Nairobi, Kenya

    Google Scholar 

  • Kiraly L (2003) Karstification and goundwater flow. In: Gabrovsek F (ed) Evolution of karst: from prekarst to cessation. Zalozba ZRC, Postojna-Ljbljana, pp 155–190

    Google Scholar 

  • Lamban LJ, Martos S, Rodríguez-Rodríguez M, Rubio JC (2011) Application of groundwater sustainability indicators to the carbonate aquifer of the Sierra de Becerrero (Southern Spain). Environ Earth Sci 64(7):1835–1848

    Article  Google Scholar 

  • Lerner DN, Issar AS, Simmers I (1990) Groundwater recharge, a guide to understanding and estimating natural recharge. Int Assoc Hydrogeol, Kenilworth

    Google Scholar 

  • Llamas MR, Custodio E (2003) Intensive use of groundwater. Challenges and opportunities. Balkema Publishers, Lisse

    Google Scholar 

  • Llamas MR, Martinez-Santos P (2005) Intensive groundwater use: silent revolution and potential source of social conflicts. Guest Editorial. J Water Resour Plan Manag 131:337–341

    Article  Google Scholar 

  • Llorens P (1997) Rainfall interception by Pinus sylvestris forest patch overgrown in a Mediterranean mountainous abandoned area II. Assessment of the applicability of Gah′s analytical model. J Hydrol 240:131–144

    Article  Google Scholar 

  • Mahlknecht J, Schneider JF, Merkel BJ, de León IN, Bernasconi SM (2004) Groundwater recharge in a sedimentary basin in semi-arid Mexico. Hydrogeol J 12:511–530

    Article  Google Scholar 

  • Martínez-Santos P, Andreu JM (2010) Lumped and distribuited approaches to model natural recharge in semiarid karst aquifers. J Hydrol 388:389–398

    Article  Google Scholar 

  • Martos-Rosillo S (2005) Contribución al conocimiento hidrogeológico del acuífero carbonático de la Sierra de Estepa (Sevilla). Trabajo de Investigación Tutelada. Universidad de Granada, Granada

    Google Scholar 

  • Martos-Rosillo S (2008) Investigación hidrogeológica orientada a la gestión racional de acuíferos carbonáticos sometidos a un uso intensivo del agua subterránea. El caso de la Sierra de Estepa (Sevilla). Tesis Doctoral. Universidad de Granada, Granada

  • Martos-Rosillo S, Martín Machuca M, Ballester A, Martín-Sosa D, Díez A (2006) Nuevas técnicas de perforación y testificación de sondeos de investigación hidrogeológica en materiales carbonáticos. El caso de la Sierra de Estepa (Sevilla). In: Durán JJ, Andreo By, Carrasco F (eds) Karst, cambio climático y aguas subterráneas. Publicaciones del Instituto Geológico y Minero de España, Málaga, pp 161–171

  • Martos-Rosillo S, Rodríguez-Rodríguez M, Moral F, Cruz-Sanjulián JJ, Rubio JC (2009) Analysis of groundwater mining in two carbonate aquifers in Sierra de Estepa (SE Spain) based on hydrodynamic and hydrochemical data. Hydrogeol J 17:1617–1627

    Article  Google Scholar 

  • Milly PCD (1994a) Climate, interseasonal storage of soil water, and the annual water balance. Adv Water Resour 17(1–2):19–24

  • Milly PCD (1994b) Climate, soil water storage, and the average annual water balance. Adv Water Resour 30(7):2143–2156

  • Murillo JM, Orden Gómez JA (1996) Sobreexplotación, alternativas de gestión y evaluación del efecto del cambio climático en la recarga natural del acuífero Kimmeridgiense de Cabezón de Oro (Alicante). In: Antigüedad I, Eraso A (eds) Recursos hídricos en regiones kársticas, Vitoria, pp 73–88

  • Nativ R, Adar E, Dahan O, Geyh M (1995) Water recharge and solute transport through the vadose zone of fractured chalk under desert conditions. Water Resour Res 31:253–261

    Article  Google Scholar 

  • Nimmo JR, Stonestrom D, Healy RW (2003) Aquifer recharge. In: Steward BA, Howell TA (eds) Encyclopedia of water science. Dekker, New York, pp 1–4

    Google Scholar 

  • Ortiz P, Mayoral E, Guerrero MA, Galán E (1994) La piedra caliza de la Sierra de Estepa (Sevilla). Caracterización y propiedades. Boletín Sociedad Española de Mineralogía 17:37–38

    Google Scholar 

  • Ortiz P, Mayoral E, Guerrero MA, Galán E (1995) Caracterización petrográfica y geoquímica de las calizas de la Sierra de Estepa (Sevilla) y evaluación de la calidad técnica como material de construcción. Estud Geol 51:213–222

    Article  Google Scholar 

  • Oyonarte C, Escoriza I, Delgado R, Pinto V, Delgado G (1998) Water-retention capacity in fine earth and gravel fractions of semiarid Mediterranean Montane soils. Arid Land Res Manag 12:29–45

    Google Scholar 

  • Risser DW, Gburek WJ, Folmar GJ (2009) Comparison of recharge estimates at small watershed in east-central Pennsylvania, USA. Hydrogeol J 17:287–298

    Article  Google Scholar 

  • Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39

    Article  Google Scholar 

  • Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds M, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arids regions. Hydrol Process 20:3335–3370

    Article  Google Scholar 

  • Simmers I (1997) Recharge of phreatic aquifers in semi-arid areas. A.A. Balkema, Rotterdam

    Google Scholar 

  • UNESCO (1979) Map of the world distribution of arid regions. UNESCO, Paris

    Google Scholar 

  • White WB (1999) Conceptual models for karstic aquifers. In: Palmer AN, Palmer MV, Sasowsky LD (eds) Karst modeling. Karst Waters Institute. Special Publication, Charles Town, pp 11–16

    Google Scholar 

  • Williams PW (1983) The role of the subcutaneous zone in karst hydrogeology. J Hydrol 61:45–76

    Article  Google Scholar 

  • Worthington SRN (1999) A comprehensive strategy for understanding flow in carbonate aquifers. In: Palmer AN, Palmer MV, Sasowsky LD (eds) Karst modeling. Karst Waters Institute, Charles Town, pp 30–37

    Google Scholar 

  • Worthington SRH, Ford DC (1997) Borehole tests for megascale channeling in carbonate aquifers. In: Jeannin P-Y (ed) Proceedings of the sixth conference on limestone hydrology and fissured media. Centre of Hydrogeology, University of Neuchatel, Switzerland, pp 191–195

  • Yangui H, Zouari K, Trabelsi R, Rozanski K (2011) Recharge mode and mineralization of groundwater in a semi-arid region: Sidi Bouzid plain (central Tunisia). Environ Earth Sci 63(5):969–979

    Article  Google Scholar 

  • Zhang L, Walker G (1998) The basics of recharge and discharge. CSIRO Publishing, Collingwood

    Google Scholar 

Download references

Acknowledgments

The authors thank to J. A. López-Geta and M. Martin-Machuca (Geological Survey of Spain) for encouraging this study and for their efforts in the monitoring of this aquifers. This study was supported by the projects TOPO-IBERIA CONSOLIDER-INGENIO CSD2006-00041, CGL2009 07721, CGL2009 11384, CGL2010 21048, CGL2010 15498, and CGL 2008 0367 E/BTE of the Spanish Ministry of Science and Education, as well as by Research Groups RNM-148 and RNM-123 of the Junta de Andalucía Regional Government. Jean Louise Sander has revised the English style. The authors thank Professor J. V. Giráldez (University of Cordoba) the special contribution in the daily-soil water balance section.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Rodríguez-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martos-Rosillo, S., Rodríguez-Rodríguez, M., Pedrera, A. et al. Groundwater recharge in semi-arid carbonate aquifers under intensive use: the Estepa Range aquifers (Seville, southern Spain). Environ Earth Sci 70, 2453–2468 (2013). https://doi.org/10.1007/s12665-013-2288-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2288-0

Keywords

Navigation