Environmental Earth Sciences

, Volume 70, Issue 4, pp 1727–1733 | Cite as

Environmental quality evaluation of the Vacacaí River, Rio Grande do Sul, Brazil

  • Daiani Kochhann
  • Everton Rodolfo Behr
  • Adilson de Chaves
  • Marcia F. Mesko
  • Valderi L. Dressler
  • Erico M. M. Flores
  • Bernardo Baldisserotto
Original Article

Abstract

The water quality of the Vacacaí River was assessed at different sites in the period between winter 2005 and autumn 2006. All samples were analyzed for 52 elements (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, Li, Be, Mg, Al, Ca, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, Ga, As, Se, Rb, Sr, Ag, Cd, In, Cs, Ba, Tl, Pb, Bi, U, Na, K, Hg, B, Mo, Sn, Te, Ti), temperature, pH, ammonia, and alkalinity levels. Water from the Vacacaí River ranged from slightly acidic to alkaline. No difference was observed in the chemical composition at different sites of the Vacacaí River. Levels of Ba, Ca, Sr and Mg increase in the dry seasons and reach their highest concentrations in autumn; Be and U decrease in the dry season and reach their highest concentration in spring. Al, Fe, Cr, Ni, Th, U Mn, Ca and Mg are highly positively related, indicating a common origin. Se and Cu are probably from anthropogenic source, from the rice crops of the margins of the river. Waterborne Al and Fe levels were above the desirable level for drinking water at all sites during all seasons. These results demonstrate the need for constant monitoring of water parameters, which is crucial to ensure water quality for the population of this region.

Keywords

Water quality Vacacaí River Water monitoring Water chemistry Metals 

References

  1. Al Fraij KM, Abd El Aleem MK, Al Ajmy H (1999) Comparative study of potable and mineral waters available in the state of Kuwait. Desalination 123:235–264. doi:10.1016/S0011-9164(99)00081-8 CrossRefGoogle Scholar
  2. Augustin PV Jr, Viero AP (2012) Environmental impact and geochemical behavior of soil contaminants from an industrial waste landfill in southern Brazil. Environ Earth Sci 67:1521–1530CrossRefGoogle Scholar
  3. Bonten LTC, Kroes JG, Groenendijk P, van der Grift B (2012) Modeling diffusive Cd and Zn contaminant emissions from soils to surface waters. J Contam Hydrol 138–139:113–122CrossRefGoogle Scholar
  4. Campos MB, Azevedo H, Nascimento MRL, Roque CV, Rodgher CVR (2011) Environmental assessment of water from a uranium mine (Caldas, Minas Gerais State, Brazil) in a decommissioning operation. Environ Earth Sci 62:857–863CrossRefGoogle Scholar
  5. Capkin E, Altinoc I, Karahan S (2006) Water quality and fish size affect toxicity of endosulfan, an organochlorine pesticide, to rainbow trout. Chemosphere 64:1793–1800. doi:10.1016/j.chemosphere.2005.12.050 CrossRefGoogle Scholar
  6. Chen H, Tappel AL (1996) Protection of multiple antioxidants against heme protein oxidation and lipid peroxidation induced by CBrCl3 in liver, lung, kidney heart and spleen. J Agric Food Chem 44:854–858. doi:10.1021/jf950562f CrossRefGoogle Scholar
  7. CONAMA (2005) Resolution 357, 17 March 2005. Environment Ministry, National Council of Environment. Brasília, BrazilGoogle Scholar
  8. Eaton AD, Clesceri LS, Rice EW, Greenberg AE (2005) Standard methods for the examination of water and wastewater, 21st edn. Am Public Health Assn, USAGoogle Scholar
  9. El-Bayoumy K (2001) The protective role of selenium on genetic damage and on cancer. Mutat Res 475:123–139. doi:10.1016/S0027-5107(01)00075-6 CrossRefGoogle Scholar
  10. Ghosh BC, Bhat R (1998) Environmental hazards of nitrogen loading in wetland rice fields. Environ Pollut 102:123–126. doi:10.1016/S0269-7491(98)80024-9 CrossRefGoogle Scholar
  11. Girija TR, Mahanta C, Chandramouli V (2007) Water quality assessment of an untreated effluent impacted urban stream: the Bharalu tributary of the Brahmaputra River, India. Environ Monit Assess 130:221–236. doi:10.1007/s10661-006-9391-6 CrossRefGoogle Scholar
  12. Katsoyiannis IA, Katsoyiannis AA (2006) Arsenic and other metal contamination of groundwaters in the industrial area of Thessaloniki, Northern Greece. Environ Mon Asses 123:393–406. doi:10.1007/s10661-006-9204-y CrossRefGoogle Scholar
  13. Kochhann D, Benaduce APS, Copatti CE, Lorenzatto KR, Mesko MF, Flores EMM, Dressler VL, Baldisserotto B (2009a) Protective effect of high alkalinity against the deleterious effects of chronic waterborne cadmium exposure on the detection of alarm cues by juvenile silver catfish (Rhamdia quelen). Arch Environ Contam Toxicol 56:770–775. doi:10.1007/s00244-009-9291-1 CrossRefGoogle Scholar
  14. Kochhann D, Pavanato MA, Llesuy SF, Correa LM, Riffel APK, Loro VL, Mesko MF, Flores EMM, Dressler VL, Baldisserotto B (2009b) Bioaccumulation and oxidative stress parameters in silver catfish (Rhamdia quelen) exposed to different thorium concentrations. Chemosphere 77:384–391. doi:10.1016/j.chemosphere.2009.07.022 CrossRefGoogle Scholar
  15. Kucuksezgin F, Uluturhan E, Batki H (2008) Distribution of heavy metals in water, particulate matter and sediments of Gediz River (Eastern Aegean). Environ Mon Assess 14:213–225CrossRefGoogle Scholar
  16. Laluraj CM, Gopinath G (2006) Assessment on seasonal variation of groundwater quality of phreatic aquifers–a river basin system. Environ Monit Assess 117:45–57CrossRefGoogle Scholar
  17. Larios R, Fernández-Martínez R, Silva V, Rucandio I (2012) Chemical availability of arsenic and heavy metals in sediments from abandoned cinnabar mine tailings. Environ Earth Sci. doi:10.1007/s12665-012-1757-1 Google Scholar
  18. Leppard GG (1983) Trace element speciation in surface waters and its ecological implication. Plenum Press, New YorkCrossRefGoogle Scholar
  19. Lerda DE, Prosperi CH (1996) Water mutagenicity and toxicology in Rio Tercero (Cordoba, Argentina). Water Res 30:819–824. doi:10.1016/0043-1354(95)00226-X CrossRefGoogle Scholar
  20. Letavayová L, Vlasáková D, Spallholz JE, Brozmanová J, Chovanec M (2008) Toxicity and mutagenicity of selenium compounds in Saccharomyces cerevisae. Mutat Res 683:1–10. doi:10.1016/j.mrfmmm.2007.08.009 Google Scholar
  21. Marchezan E, Zanella R, Avila LA, Camargo ER, Macedo VRM, Machado SLO (2007) Rice herbicide monitoring in two Brazilian rivers during the rice growing season. Sci Agric 64(2):131–137. doi:10.1590/S0103-90162007000200005 Google Scholar
  22. Nayak P (2002) Aluminum: impacts and disease. Environ Res 89:101–105. doi:10.1006/enrs.2002.4352 CrossRefGoogle Scholar
  23. Oinam JD, Ramanathan AL, Linda A, Singh G (2011) A study of arsenic, iron and other dissolved ion variations in the groundwater of Bishnupur District, Manipur, India. Environ Earth Sci 62:1183–1195. doi:10.1007/s12665-010-0607-2 CrossRefGoogle Scholar
  24. Puls R (1994) Mineral levels in animal health, 2nd edn. Sherpa International, ClearbrookGoogle Scholar
  25. Raghunath R, Sreedhara Murthy TR, Raghavan BR (2001) Spatial distribution of pH, EC and total dissolved solids of Nethravathi river basin, Karnataka state, India. Pollut Res 20:413–418Google Scholar
  26. Rosborg I, Nihlgärd B, Gerhardsson L, Sverdrup H (2006) Concentrations of inorganics elements in 20 municipal waters in Sweden before and after treatment–links to human health. Environ Geochem Health 28:215–229. doi:10.1007/s10653-005-9033-x CrossRefGoogle Scholar
  27. Schipper PNM, Bonten LTC, Plette ACC, Moolenaar SW (2008) Measures to diminish leaching of heavy metals to surface waters from agricultural soils. Desalination 226:89–96CrossRefGoogle Scholar
  28. Shanmugam P, Neelamani S, Ahn Y-H, Philip L, Hong G-H (2007) Assessment of the levels of coastal marine pollution of Chennai city, southern India. Water Resour Manage 21:1187–1206. doi:10.1007/s11269-006-9075-6 CrossRefGoogle Scholar
  29. Sillanpää M, Hulkkonen R-M, Manderscheid A (2002) Drinking water quality in the alpine pastures of the eastern Tibetan plateau. Rangifer 15:47–52Google Scholar
  30. Tapiero H, Townsend DM, Tew KD (2003) The antioxidant role of selenium and seleno-compounds. Biomed Pharmacother 57:134–144. doi:10.1016/S0753-3322(03)00035-0 CrossRefGoogle Scholar
  31. Walton JR (2007) A longitudinal study of rats chronically exposed to aluminium at human dietary levels. Neurosci Lett 412:29–33. doi:10.1016/j.neulet.2006.08.093 CrossRefGoogle Scholar
  32. Wang L, Wang Y, Xu C, An Z, Wang S (2011) Analysis and evaluation of the source of heavy metals in water of the River Changjiang. Environ Monit Assess 173:301–313CrossRefGoogle Scholar
  33. WHO (2004) Guidelines for drinking water quality, 3rd edn. World Health Organization, Geneva SwitzerlandGoogle Scholar
  34. Zanella R, Primel EG, Machado SLO, Goncalves FF, Marchezan E (2002) Monitoring of the herbicide clomazone in environmental water samples by solid-phase extraction and high-performance liquid chromatography with ultraviolet detection. Chromathographia 55:573–577. doi:10.1007/BF02492903 CrossRefGoogle Scholar
  35. Zhao L, Wu L, Li Y, Lu X, Zhu D, Uphoff N (2009) Influence of the system of rice intensification on rice yield and nitrogen and water use efficiency with different N application rates. Expl Agric 45:275–286CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Daiani Kochhann
    • 1
  • Everton Rodolfo Behr
    • 2
  • Adilson de Chaves
    • 3
  • Marcia F. Mesko
    • 4
  • Valderi L. Dressler
    • 5
  • Erico M. M. Flores
    • 5
  • Bernardo Baldisserotto
    • 3
  1. 1.Laboratório de Ecofisiologia e Evolução MolecularInstituto Nacional de Pesquisas da AmazôniaManausBrazil
  2. 2.Unidade Descentralizada de Educação Superior de Silveira MartinsUniversidade Federal de Santa MariaSilveira MartinsBrazil
  3. 3.Departamento de Fisiologia e FarmacologiaUniversidade Federal de Santa MariaSanta MariaBrazil
  4. 4.Centro de Ciências Químicas, Farmacêuticas e de AlimentosUniversidade Federal de PelotasCapão do LeãoBrazil
  5. 5.Departamento de QuímicaUniversidade Federal de Santa MariaSanta MariaBrazil

Personalised recommendations