Advertisement

Environmental Earth Sciences

, Volume 70, Issue 4, pp 1551–1568 | Cite as

Groundwater management based on GIS techniques, chemical indicators and vulnerability to seawater intrusion modelling: application to the Mahdia–Ksour Essaf aquifer, Tunisia

  • Salwa SaidiEmail author
  • Salem Bouri
  • Hamed Ben Dhia
Original Article

Abstract

In arid and semi-arid countries worldwide, conflicts between human development activities and conservation of groundwater resources are widespread and attract many public debates. This research aims to propose groundwater management alternatives for a coastal aquifer by studying its vulnerability and in particularly the risk of seawater intrusion. An additional objective is to propose some agricultural policies aimed to conserve groundwater resources in Mahdia and Ksour Essaf. Intensive groundwater mining, for irrigation and for water drinking, has caused an overexploitation of the water resources. In addition, the degradation of water quality, caused by septic tanks and intensive agricultural activities, has given rise to notable crucial state of the groundwater resources. With the aim of tackling the groundwater degradation problem, integration into a common platform of vulnerability assessment, seawater intrusion modelling and hydrochemical analysis is proposed. This platform can considerably reflect the water resources state in order to propose some solutions reducing the contamination of the Mahdia–Ksour Essaf aquifer. The groundwater management alternatives, proposed in this study, were prepared within a geographical information system.

Keywords

Groundwater management Hydrochemical indicators Vulnerability Seawater intrusion modelling Mahdia–Ksour Essaf aquifer 

References

  1. Agarwadkar YY (2005) Salinity mapping in coastal area using GIS and remote Sensing. Thesis report, Indian Institute Of Remote Sensing, National Remote Sensing Agency (NRSA), Department Of Space, Dehradun, India, p 65Google Scholar
  2. Amari S, Maaloug I (2004) Portrait du gouvernorat de Mahdia, Institut Supérieur des Etudes technologiques de Mahdia. Rapport inédit, p 53Google Scholar
  3. Andres GF, Gerald ES (2011) How might shadow price restrictions reduce technical efficiency? Evidence from a restricted DEA analysis of coffee farms in vietnam. J Agric Econ 62:47–58. doi: 10.1111/j.1477-9552.2010.00269.x CrossRefGoogle Scholar
  4. Bouri S, Ben Dhia H (2010) A thirty-year artificial recharge experiment in a coastal aquifer in an arid zone: the Teboulba aquifer system (Tunisian Sahel). C R Geosci 342:60–74CrossRefGoogle Scholar
  5. Brian GK, Sandra ME, Leon JK (2011) Using Cl/Br ratios and other indicators to assess potential impacts on groundwater quality from septic systems: a review and examples from principal aquifers in the United States. J Hydrol 397:151–166CrossRefGoogle Scholar
  6. Chachadi AB, Labo Ferreira JP (2005) Assessing Aquifer vulnerability to sea-water intrusion using GALDIT method: Part 2—GALDIT Indicators Description. In: Proc of the Fourth Inter—Celtic Colloquium on Hydrology and Management of Water Resources. Guimaraes, Portugal, pp 12Google Scholar
  7. Chachadi AG, Lobo Ferreira JP, Noronha L, Choudri BS (2003) Assessing the impact of sea-level rise on salt water intrusion in coastal Aquifers using GALDIT model. APRH/CEAS. In: Processing Seminário Sobre Águas Subterrâneas, Lisboa, Fev. 2003, pp 13Google Scholar
  8. Corcho Alvarado JA, Purtschert R, Hinsby K, Troldborg L, Hofer M, Kipfer R, Aeschbach-Hertig W, Arno-Synal H (2005) 36Cl in modern groundwater dated by a multi-tracer approach (3H/3He, SF6, CFC-12 and 85Kr): a case study in quaternary sand aquifers in the Odense Pilot River Basin, Denmark. Appl Geochem 20:599–609CrossRefGoogle Scholar
  9. Fetter CW (1994) Geology of Ground Water occurrence, in chapter 9, Applied Hydrology, Third Edition, Prentice Hall, pp 370–371Google Scholar
  10. Goodchild MF (1993) The state of GIS for environmental problem-solving. In: Goodchild MF, Parks BO, Steyaert T (eds) Environmental modeling with GIS. Oxford University Press, New York, pp 8–15Google Scholar
  11. Hadipuro W, Indriyanti NY (2009) Typical urban water supply provision in developing countries: a case study of Semarang City, Indonesia. Water Policy 11:55–66CrossRefGoogle Scholar
  12. INM (Institut National de Météo) (2007) Tableaux climatologiques mensuels, stations de Mahdia (unpubl.). Annuaire de l’Institut de la Météorologie Nationale, Tunis, TunisiaGoogle Scholar
  13. CRDA (Commissariat régional du développement agricole de Mahdia) (2005) Annuaires d’exploitation des nappes phréatiques du gouvernorat de Mahdia, CRDA Mahdia, TunisiaGoogle Scholar
  14. CRDA (Commissariat régional du développement agricole de Mahdia) (2007a) Comptes rendus des forages et piézomètres de surveillance (unpubl.). Arrondissement des Ressources en Eaux de Mahdia. CRDA, Mahdia, TunisiaGoogle Scholar
  15. CRDA (Commissariat régional du développement agricole de Mahdia) (2007b) Annuaires de surveillance de piézométrie, de nitrate et de salinité (unpubl.). Arrondissement des Ressources en Eaux de Mahdia. CRDA, Mahdia, TunisiaGoogle Scholar
  16. Miller MW, Hay ME, Miller SL, Malone D, Sotka EE, Szmant AM (1999) Effects of nutrients versus herbivores on reef algae: a new method for manipulating nutrients on coral reefs. Limnol Oceanogr 44:1847–1861Google Scholar
  17. Nguyet MTV, Goldscheider N (2006) A simplified methodology for mapping groundwater vulnerability and contamination risk, and its first application in a tropical karst area, Vietnam. Hydrogeol J 14:1666–1675CrossRefGoogle Scholar
  18. Nolan BT, Hitt KJ (2006) Vulnerability of shallow ground water and drinking water wells to nitrate in the United States. Environ Sci Technol 40:7834–7840CrossRefGoogle Scholar
  19. Pulido-Leboeuf P, Pulido-Bosch A, Calvache ML, Vallegos A, Andreu JM (2003) Strontium, SO4 2−/Cl − and Mg2+/Ca2+ ratios as tracers for the evolution of seawater into coastal Aquifers: the example of Castell de Ferro Aquifer (SE Spain). C R Geosci 335:1039–1048CrossRefGoogle Scholar
  20. Rodriguez R, Reyes R, Rosales J, Berlin J, Mejia JA, Ramos A (2001) Estructuracion de mapas tematicos de indices de vulerabilidad acuifera de la mancha urbana de Salamanca Guanajuato. Technical report, Municipio de Salamanca, CEAG, IGF-UNAM, p 122Google Scholar
  21. Saidi S (2011) Contribution des approches paramétriques, cartographiques et statistiques à l’étude de la vulnérabilité du système aquifère phréatique de Mahdia (Tunisie Orientale), Thèse de doctorat. Université de Sfax, Tunisie, pp 198Google Scholar
  22. Saidi S, Bouri S, Ben Dhia H, Anselme B (2009) A GIS-based susceptibility indexing method for irrigation and drinking water management planning: application to Chebba–Mellouleche Aquifer, Tunisia. Agric Water Manag 96:1683–1690CrossRefGoogle Scholar
  23. Saidi S, Bouri S, Ben Dhia H (2010) Groundwater vulnerability and risk mapping of the Hajeb-Jelma Aquifer (Central Tunisia) using a GIS-based DRASTIC model. Environ Earth Sci 59:1579–1588CrossRefGoogle Scholar
  24. Shangguan Z, Shao M, Horton R, Lei T, Qin L, Ma J (2002) A model for regional optimal allocation of irrigation water resources under deficit irrigation and its applications. Agric Water Manag 52:139–154CrossRefGoogle Scholar
  25. Skubon BA Jr (2005) Groundwater quality and GIS investigation of a shallow sand aquifer, Oak opening region, North West Ohio. Geol Soc Am Abstr Prog 37(5):94Google Scholar
  26. Squillace PJ, Moran MJ (2007) Factors associated with sources, transport, and fate of volatile organic compounds and their mixtures in aquifers of the United States. Environ Sci Technol 41:2123–2130CrossRefGoogle Scholar
  27. Troge (1994) A GIS strategy for lake management issues, (National Conference on Environmental Problem-Solving with Geographic Information Systems, Cincinnati, Ohio, USAGoogle Scholar
  28. U.S. Environmental Protection Agency. (2006) Drinking water contaminants. http://www.epa.gov/safewater/contaminants/
  29. Van Stempvoort D, Ewert LE, Wassenaar L (1993) Aquifer vulnerability index: a GIS-compatible method for groundwater vulnerability mapping. Can Water Resour J 18:25–37Google Scholar
  30. Wakida FT, Lerner DN (2005) Non-agricultural sources of groundwater nitrate: a review and case study. Water Res 39(1):3–16Google Scholar
  31. Werner AD (2010) A review of seawater intrusion and its management in Australia. Hydrogeol J 18:281–285CrossRefGoogle Scholar
  32. Yammani S (2007) Groundwater quality suitable zones identification: application of GIS, Chittoor area, Andhra Pradesh, India. Environ Geol 53(1):201–210CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Water, Energy and Environment Laboratory (LR3E)SfaxTunisia
  2. 2.Geological DepartmentUniversity of Sciences El ManarTunisTunisia

Personalised recommendations