Environmental Earth Sciences

, Volume 70, Issue 1, pp 201–213 | Cite as

Magnetic studies and elemental analysis of river sediments: a case study from the Ponnaiyar River (Southeastern India)

  • Marcos A. E. Chaparro
  • G. Suresh
  • Mauro A. E. Chaparro
  • V. Ramasamy
  • Ana M. Sinito
Original Article


The Ponnaiyar River is one of the largest rivers of the Tamil Nadu state (India), flowing a distance of 430 km from its point of origin to the sea. This work contributes with new data of magnetic and elemental composition of river sediments, and improves the knowledge obtained by preliminary and previous studies of rivers from Southeastern India. Magnetic susceptibility, anhysteretic and isothermal remanent magnetization and chemical determinations (major and trace metals) were measured. Magnetic results reveal the predominance of magnetite-like mineral with magnetic grain size variations along the river and in depth. Most of the uppermost samples have the major presence of trace metals and higher values of magnetic concentration. Magnetic and chemical variables were also analysed as potential pollution indicators using multivariate statistical techniques: canonical correlation and fuzzy c-means clustering analyses, which confirmed the existence of relationships, but not in a simple way, between magnetic and chemical variables. Furthermore, fuzzy analysis allows classifying the data in different well-differentiated groups regarding the trace metal load, concentration and feature-dependent parameters. The most polluted samples show high concentration of trace elements and magnetic carriers, softer and coarser magnetic minerals; on the contrary, the unpolluted samples (from the deepest sediments) have the opposite characteristics.


Environmental magnetism Magnetic susceptibility Fuzzy c-means clustering method Pollution River sediments 



The authors wish to thank the Annamalai University, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), and National Council for Scientific and Technological Research (CONICET) for their financial support. The authors also thank the three anonymous reviewers for their constructive comments that helped in improving the paper.

Supplementary material

12665_2012_2116_MOESM1_ESM.xlsx (18 kb)
Supplementary material 1 (XLSX 17 kb)


  1. Annexure (2006) Baseline environmental and social information of river basins. The irrigated agriculture modernisation and water-bodies restoration and management (IAMWARM) project. Accessed 30 May 2012
  2. Augustinus P, Barton CE, Zawadzki A, Harle K (2010) Lithological and geochemical record of mining-induced changes in sediments from Macquarie Harbour, southwest Tasmania. Aust Environ Earth Sci 61(3):625–639CrossRefGoogle Scholar
  3. Bartington Instruments Ltd (1994) Operation manual. Environmental magnetic susceptibility—using the Bartington MS2 system. Chi Publishing, UK, p 54Google Scholar
  4. Chaparro Marcos AE, Chaparro Mauro AE, Rajkumar P, Ramasamy V, Sinito Ana M (2011) Magnetic parameters, trace elements and multivariate statistical studies of river sediments from south eastern India: a case study from Vellar River. Environ Earth Sci 63(2):297–310CrossRefGoogle Scholar
  5. Chaparro MAE, Gogorza CSG, Chaparro MAE, Irurzun MA, Sinito AM (2006) Review of magnetism and heavy metal pollution studies of various environments in Argentina. Earth Planets Space 58(10):1411–1422Google Scholar
  6. Chaparro MAE, Sinito AM, Ramasamy V, Marinelli C, Chaparro MAE, Mullainathan S, Murugesan S (2008a) Magnetic measurements and pollutants of sediments from Cauvery and Palaru River. India Environ Geol 56:425–437CrossRefGoogle Scholar
  7. Chaparro MAE, Chaparro MAE, Marinelli C, Sinito AM (2008b) Multivariate techniques as alternative statistical tools applied to magnetic proxies for pollution: cases of study from Argentina and Antarctica. Environ Geol 54:365–371CrossRefGoogle Scholar
  8. Chaparro MAE, Chaparro MAE, Sinito AM (2012) An interval fuzzy model for magnetic monitoring: estimation of a pollution index. Environ Earth Sci 66(5):1477–1485CrossRefGoogle Scholar
  9. Cuadras CM (1981) Métodos de analisis multivariante. Eunibar, BarcelonaGoogle Scholar
  10. Dearing J, Dann R, Hay K, Lees J, Loveland P, Maher B, O’Grady K (1996) Frequency-dependent susceptibility measurements of environmental materials. Geophys J Int 124:228–240CrossRefGoogle Scholar
  11. Desenfant F, Petrovský E, Rochette P (2004) Magnetic signature of industrial pollution of stream sediments and correlation with heavy metals: case study from South France. Water Air Soil Pollut 152(1):297–312CrossRefGoogle Scholar
  12. Dunlop J, Ozdemir O (1997) Rock magnetism. Fundamentals and frontiers. Cambridge University Press, Cambridge, p 573CrossRefGoogle Scholar
  13. Durza O (1999) Heavy contamination and magnetic susceptibility in soils around metallurgical plant. Phys Chem Earth (A) 24(6):541–543CrossRefGoogle Scholar
  14. El Baghdadi M, Barakat A, Sajieddine M, Nadem S (2012) Heavy metal pollution and soil magnetic susceptibility in urban soil of Beni Mellal City (Morocco). Environ Earth Sci 66:141–155CrossRefGoogle Scholar
  15. Franke C, Kissel C, Robin E, Bonté P, Lagroix F (2009) Magnetic particle characterization in the Seine river system: Implications for the determination of natural versus anthropogenic input. Geochem Geophys Geosyst 10(Q08Z05):20Google Scholar
  16. Gudadhe SS, Sangode SJ, Patil SK, Chate DM, Meshram DC, Badekar AG (2012) Pre-and post-monsoon variations in the magnetic susceptibilities of soils of Mumbai metropolitan region: implications to surface redistribution of urban soils loaded with anthropogenic particulates. Environ Earth Sci doi: 10.1007/s12665-012-1528-z
  17. Hanesch M, Scholger R, Dekkers MJ (2001) The application of fuzzy C-means cluster analysis and non-linear mapping to a soil data set for the detection of polluted sites. Phys Chem Earth (A) 26(1–12):885–891CrossRefGoogle Scholar
  18. InfoStat (2009) InfoStat versión 2009. Grupo InfoStat, FCA. Universidad Nacional de Córdoba, ArgentinaGoogle Scholar
  19. Jordanova DV, Hoffmann V, Thomas Fehr K (2004) Mineral magnetic characterization of anthropogenic magnetic phases in the Danube river sediments (Bulgarian part). Earth Planet Sci Lett 221:71–89CrossRefGoogle Scholar
  20. King J, Banerjee SK, Marvin J, Özdemir Ö (1982) A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: some results from lake sediments. Earth Planet Sci Lett 59:404–419CrossRefGoogle Scholar
  21. Knab M, Appel E, Hoffmann V (2001) Separation of the anthropogenic portion of heavy metal contents along a highway by means of magnetic susceptibility and fuzzy c-means cluster analysis. Eur J Environ Eng Geophys 6:125–140Google Scholar
  22. Knab M, Hoffmann V, Petrovský E, Kapicka A, Jordanova N, Appel E (2006) Surveying the anthropogenic impact of the Moldau river sediments and nearby soils using magnetic susceptibility. Environ Geol 49:527–535CrossRefGoogle Scholar
  23. Maher BA (1986) Characterisation of soils by mineral magnetic measurements. Phys Earth Planet Int 42:76–92CrossRefGoogle Scholar
  24. Maher BA, Thompson R, Hounslow MW (1999) Introduction. In: Maher BA, Thompson R (eds) Quaternary climate, environments and magnetism. Cambridge University Press, Cambridge, pp 1–48CrossRefGoogle Scholar
  25. Peters C, Dekkers M (2003) Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Phys Chem Earth 28:659–667CrossRefGoogle Scholar
  26. Petrovský E, Ellwood B (1999) Magnetic monitoring of air, land and water pollution. In: Maher BA, Thompson R (eds) Quaternary climates, environment and magnetism. Cambridge University Press, Cambridge, pp 279–322CrossRefGoogle Scholar
  27. Petrovský E, Kapicka A, Jordanova N, Boruka L (2001) Magnetic properties of alluvial soils contaminated with lead, zinc and cadmium. J App Geophys 48:127–136CrossRefGoogle Scholar
  28. Ramasamy V, Murugesan S, Mullainathan S, Chaparro MAE (2006) Magnetic characterization of recently excavated sediments of Cauvery River, Tamil Nadu India. Pollut Res 25(2):357–362Google Scholar
  29. Ramasamy V, Suresh G, Venkatachalapathy R (2009) Magnetic susceptibility of the Ponnaiyar river sediments, Tamilnadu, India. Glob J Environ Res 3(2):126–131Google Scholar
  30. Ruby D, Chitra C, Vasantha A, Ramasubbulakshmi T, Manivel M (2010) Integrated analysis of geophysical data of Ponnaiyar river basin using Arcview GIS software. Int J Geomat Geosci 1(3):456–465Google Scholar
  31. Sandeep K, Shankar R, Krishnaswamy J (2011) Assessment of suspended particulate pollution in the Bhadra River catchment, Southern India: an environmental magnetic approach. Environ Earth Sci 62:625–637CrossRefGoogle Scholar
  32. Suresh G, Ramasamy V, Meenakshisundaram V, Venkatachalapathy R, Ponnusamy V (2011a) Influence of mineralogical and heavy metal composition on natural radionuclide concentrations in the river sediments. Appl Radiat Isot 69:1466–1474CrossRefGoogle Scholar
  33. Suresh G, Ramasamy V, Meenakshisundaram V, Venkatachalapathy R, Ponnusamy V (2011b) A relationship between the natural radioactivity and mineralogical composition of the Ponnaiyar river sediments, India. J Environ Radioact 102:370–377CrossRefGoogle Scholar
  34. Suresh G, Ramasamy V, Ponnusamy V (2011c) Mineralogical and thermoluminiscence characterization of the river sediments from Tamilnadu, India. Nat Res Res 20:389–399CrossRefGoogle Scholar
  35. Thompson R, Oldfield F (1986) Environmental magnetism. Allen & Unwin (Publishers) Ltd., Australia, p 225CrossRefGoogle Scholar
  36. TNPCB (2010) Tamil Nadu pollution control board. Accessed 30 May 2012
  37. Wang XS, Qin Y (2006) Use of multivariate statistical analysis to determine the relationship between the magnetic properties of urban topsoil and its metal, S, and Br content. Environ Geol 51:509–516CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marcos A. E. Chaparro
    • 1
  • G. Suresh
    • 2
  • Mauro A. E. Chaparro
    • 3
  • V. Ramasamy
    • 4
  • Ana M. Sinito
    • 1
  1. 1.Instituto de Física Arroyo Seco (UNCPBA), CONICETTandilArgentina
  2. 2.Department of PhysicsArulmigu Meenakshi Amman College of EngineeringVadamavandalIndia
  3. 3.Instituto Multidisciplinario de Ecosistemas y Desarrollo Sustentable (UNCPBA), CONICETTandilArgentina
  4. 4.Department of PhysicsAnnamalai UniversityAnnamalainagarIndia

Personalised recommendations