Skip to main content

Advertisement

Log in

Geomechanical and geochemical effects on sandstones caused by the reaction with supercritical CO2: an experimental approach to in situ conditions in deep geological reservoirs

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The geochemical and geomechanical behaviour of reservoir rocks from deep saline aquifers during the injection and geological storage of CO2 is studied in laboratory experiments. A combination of geochemical and geomechanical studies was carried out on various sandstones from the North German Basin. After the mineralogical, geochemical and petrophysical characterization, a set of sandstone samples was exposed to supercritical (sc)CO2 and brine for 2–4 weeks in an autoclave system. One sample was mineralogically and geochemically characterised and then loaded in a triaxial cell under in situ pressure and temperature conditions to study the changes of the geomechanical rock properties. After treatment in the autoclaves, geochemical alterations mainly in the carbonate, but also in the sheet silicate cements as well as in single minerals of the sandstones were observed, affecting the rocks granular structure. In addition to partial solution effects during the geochemical experiments, small grains of secondary carbonate and other mineral precipitations were observed within the pore space of the treated sandstones. Results of additional geomechanical experiments with untreated samples show that the rock strength is influenced by the saturation degree, the confining pressure, the pore fluid pressure and temperature. The exposure to pure scCO2 in the autoclave system induces reduced strength parameters, modified elastic deformation behaviour and changes of the effective porosity in comparison to untreated sandstone samples. Experimental results show that the volume of pore fluid fluxing into the pore space of the sandstones clearly depends on the saturation level of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alemu BL, Aker E, Soldal M, Johnsen Ø, Aagaard P (2012) Effect of sub-core scale heterogeneities on acoustic and electrical properties of a reservoir rock: a CO2 flooding experiment of brine saturated sandstone in a computed tomography scanner. Geophys Prospect. doi:10.111/j.1365-2478.2012.01061.x

  • Anderson OL, Grew PC (1977) Stress corrosion theory of crack propagation with application to geophysics. Rev Geophys Space Phys 15:77–104

    Article  Google Scholar 

  • Andre′ L, Audigane P, Azaroual M, Menjoz A (2007) Numerical modelling of fluid–rock chemical interactions at the supercritical CO2–liquid interface during supercritical CO2 injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France). Energy Convers Manage 48:1782–1797

    Article  Google Scholar 

  • Azaroual M, Pruess K, Fouillac C (2007) Feasibility of using supercritical CO2 as heat transmission fluid in the EGS (Enhanced Geothermal Systems) integrating the carbon storage constraints. ENGINE—Enhanced Geothermal Innovative Network for Europe. Workshop 2, Volterra Italy

  • Bachmann GH, Voigt T, Bayer U, von Eynatten H, Legler B, Littke R (2008) Depositional history and sedimentary cycles in the Central European Basin System. In: Littke R, Bayer U, Chajewski D, Nelskamp S (eds) Dynamics of Complex Intracontinental Basins. The example of the Central European Basin System. Springer, Heidelberg, pp 157–172

    Google Scholar 

  • Baker JC, Bai GP, Hamilton PJ, Golding SD, Keene JB (1995) Continental-scale magmatic carbon dioxide seepage recorded by dawsonite in the Bowen-Gunnedah-Sydney Basin system. Eastern Australia. J Sediment Res A65(3):522–530

    Google Scholar 

  • Birkholzer JT, Zhou Q, Tsang C (2009) Large-scale impact of CO2-storage in deep saline aquifers: a sensitive study on pressure response in stratified systems. Int J Greenhouse Gas Control 3:181–194

    Article  Google Scholar 

  • Busenberg E, Clemency C (1976) The dissolution kinetics of feldspars at 25 °C and 1 atm CO2 partial pressure. Geochim Cosmochim Acta 40(1):41–49

    Article  Google Scholar 

  • Busenberg E, Plummer LN (1986) A comparative study of the dissolution and crystal growth kinetics of calcite and aragonite. In: Mumpton FA (ed) Studies in diagenesis. US Geological Survey Bulletin, vol 1578, pp 139–158

  • Ellis A (1959) The solubility of calcite in carbon dioxide solutions. Am J Sci 257:354–365

    Article  Google Scholar 

  • Fernandez-Carrasco L, Puertas F, Blanco-Varela MT, Vazquez T, Rius J (2005) Synthesis and crystal structure solution of potassium dawsonite: an intermediate compound in the alkaline hydrolysis of calcium aluminate cements. Cem Concr Res 35:641–646

    Article  Google Scholar 

  • Fischer C, Gaupp R, Dirnke M, Sill O (2007) A 3D High Resolution Model of Bounding Surfaces in Aeolian-Fluvial Deposits: an Outcrop Analogue Study from the Permian Rotliegend, Northern Germany. J Pet Geol 30(3):257–274

    Article  Google Scholar 

  • Fischer C, Dunkl I, von Eynatten H, Wijbrans JR, Gaupp R (2012) Products and timing of diagenetic processes in Upper Rotliegend sandstones from Bebertal (North German Basin, Parchim Formation, Flechtingen High, Germany). Geol Mag. doi: 10.1017/S0016756811001087

  • Förster A, Norden B, Zinck-Jorgensen K, Frykmann P, Kulenkampff J, Spangenberg E, Erzinger J, Zimmer M, Kopp J, Borm G, Juhlin C.-G, Cosma C, Harter S (2006) Boreline characterization of the CO2 SINK geological storage site at Ketzin, Germany. Environmental Geosciences 133:145–161

    Google Scholar 

  • Gao Y, Liu L, Hu W (2009) Petrology and isotopic geochemistry of dawsonite-bearing sandstones in Hailaer basin, northeastern China. Appl Geochem 24(9):1724–1738

    Article  Google Scholar 

  • Gast R, Dusar M, Breitkreuz C, Gaupp R, Schneider JW, Stemmerik L, Geluk M, Geissler M, Kiersnowski H, Glennie K, Kabel S, Jones N (2010) Rotliegend. In: Doornenbal JC, Stevenson AG (eds) Petroleum geological atlas of the Southern Permian Basin Area. EAGE Publications, Houten

  • Gaus I, Audigane P, André L, Lions J, Jacquemet N, Durst P, Czernichowski-Lauriol I, Azaroual M (2008) Geochemical and solute transport modelling for CO2 storage, what to expect from it? Intern J Greenhouse Gas Control 2:605–625

    Article  Google Scholar 

  • Gemmer L, Nielsen SB, Bayer U (2003) Late Cretaceous-Cenozoic evolution of the North German Basin—results from the 3-D geodynamic modeling. Tectonophysics 373:39–54

    Article  Google Scholar 

  • Gerling JP, Reinhold K, Knopf S (2009) Speicherpotentiale für Deutschland. In: Die geologische Speicherung von CO2—Aktuelle Forschungsergebnisse und Perspektiven. Geotechnologien Science Report No. 14, 28–36

  • Gledhill DK, Morse JW (2006) Calcite solubility in Na-Ca-Mg-Cl brines. Chem Geol 233(3–4):249–256

    Article  Google Scholar 

  • Golab AN, Carr PF, Palamara DR (2006) Influence of localised igneous activity on cleat dawsonite formation in Late Permian coal measures, Upper Hunter Valley, Australia. Int J Coal Geol 66:296–304

    Article  Google Scholar 

  • Heinzelmann W (1969) Der Untere und der Mittlere Buntsandstein auf Blatt Nebra. Hall. Jb. Mitteldt. Erdgesch. 9:132–160

    Google Scholar 

  • Hellevang H, Aagaard P, Oelkers EH, Kvamme B (2005) Can dawsonite permanently trap CO2? Environ Sci Technol 39:8281–8287

    Article  Google Scholar 

  • Hellevang H, Declercq J, Aagaard P (2011) Why is dawsonite absent in CO2 charged reservoirs? Oil and Gas Science and Technology—Rev. IFP Energies nouvelles 66(1):119–135

    Article  Google Scholar 

  • Hickman S, Sibson R, Bruhn R (1995) Introduction of special section: mechanical involvement of fluid in faulting. USGS Staff Published Research, Paper 410

    Google Scholar 

  • Holdren GR Jr, Berner RA (1979) Mechanism of feldspar weathering—I Experimental studies. Geochim Cosmochim Acta 43:1161–1171

    Article  Google Scholar 

  • Holl A, Althaus E, Lempp C, Natau O (1997) The petrophysical behaviour of crustal rocks under the influence of fluids. Tectonophysics 275:253–260

    Article  Google Scholar 

  • Jaeger CJ, Cook NGW, Zimmerman R (2007) Fundamentals of Rock Mechanics. Wiley-Blackwell. p 488

  • Kaszuba JP, Janecky (2003) CO2 reaction processes in a model brine aquifer at 200  C and 200 bars: implications for geologic sequestration of carbon. Appl Geochem 18:1065–1080

    Article  Google Scholar 

  • Kulke H, Gast R, Helmuth H, Lützner H (1993) Harz Area, Germany: typical Rotliegend and Zechstein reservoirs in the Southern Permian basin (Central Europe. In: Mulock-Houwer JA, Pilaar WF, Graaff-Trouwborst VD (eds) Field Trip 4. AAPG International Conference and Exhibition, The Hague

    Google Scholar 

  • Kummerow J, Spangenberg E (2011) Experimental evaluation of the impact of the interactions of CO2–SO2, brine and reservoir rock on petrophysical properties: a case study from the Ketzin test site. Germany. Geochem Geophys Geosyst 12(5):10. doi:10.1029/2010GC003469

    Google Scholar 

  • Littke R, Bayer U, Gajewski D (2005) Dynamics of sedimentary basins: the example of the Central European Basin System. Int J Earth Sci 94:779–781

    Article  Google Scholar 

  • Lombard JM, Azaroual M, Pironon J, Broseta D, Egermann P, Murnier G, Mouronval G (2010) CO2 injectivity in geological storages: an overview of program and results of the geocarbon-injectivity project. Oil and gas science and technology—Rev. IFP 65(4):533–539

    Google Scholar 

  • Main IG, Sammonds PR, Meredith PG (1993) Application of a modified Griffith criterion to the evolution of fractal damage during compressional rock failure. Geophys J Int 115:367–380

    Article  Google Scholar 

  • Marini L (2007) Geological sequestration of Carbon Dioxide—Thermodynamics, Kinetics, and Reaction Path Modelling. Developments in Geochemistry 11, p 453

  • May F, Müller C, Bernstone C (2005) How much CO2 can be stored in Deep Saline Aquifers in Germany? VGB PowerTech 6:32–37

    Google Scholar 

  • Maystrenko Y, Bayer U, Brink HJ, Littke R (2008) The Central European Basin System—an overview. In: Littke R, Bayer U, Chajewski D, Nelskamp S (eds) Dynamics of Complex Intracontinental Basins. The example of the Central European Basin System, Springer, pp 17–34

    Google Scholar 

  • Müller C (2009) Charakterisierung des hydromechanischen Verhaltens der Gesteine des Mittleren Buntsandsteins im Hinblick auf geothermische Nutzung: Strukturgeologische Geländeaufnahmen, gesteinsmechanische Untersuchungen und numerische Modellierungen. Georg-August-Universität Göttingen, Diss 2009

    Google Scholar 

  • Otto V (2003) Inversion-related features along the southeastern margin of the North German Basin (Elbe Fault System). Tectonophysics 373:107–123

    Article  Google Scholar 

  • Plein E (1995) Stratigraphie von Deutschland, Norddeutsches Rotliegendbecken. Rotliegend Monographie Teil II. Courier Forschungsinstitut Senckenberg 183:1–193

    Google Scholar 

  • Pudlo D, Albrecht D, Ganzer L, Gaupp R, Kohlhepp B, Meyer R, Reitenbach V, Wienand J (2011) Petrophysical, Facies and Mineralogical-Geochemical Investigations of Rotliegend Sandstones from the Altmark Natural Gas Field in Central Germany. Energy Proc 4:4648–4655

    Article  Google Scholar 

  • Radzinski, K.-H. (1966) Stratigraphische und paläontologische Untersuchungen im Unteren und Mittleren Buntsandstein des südöstlichen Harzvorlandes. Diss. Univ. Greifswald, 1966

  • Radzinski KH (1995) Zum Unteren und Mittleren Buntsandstein im Unstruttal bei Nebra (Südwestrand der Querfurter Mulde). Mitt Geol Sachsen Anhalt 1:85–103

    Google Scholar 

  • Rettig B (1995) Die Solling-Folge (Mittlerer Buntsandstein) im Grenzgebiet zwischen Niedersachsen-Thüringen-Hessen. Mittteilungen des Geol. Inst. der Univ. Hannover 1995, 107 Seiten

  • Röhling HG (2008) Au(f)s diesem Fels müsst ihr bauen! Zur geologischen Einordnung der Burg Hanstein. In: Hans Dieter von Lanstein (Hsg). Burg Hanstein: Zur 700-jährigen Geschichte einer eichsfeldischen Grenzfeste. Mecke Druck und Verlag. Duderstadt 2008

  • Rutqvist J, Birkholzer JT, Cappa F, Tsang C-F (2007) Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Convers Manage 48:1798–1807

    Article  Google Scholar 

  • Rutqvist J, Vasco DW, Myer L (2010) Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria. Int J Greenhouse Gas Contr 4(2):225–230

    Article  Google Scholar 

  • Schütt H, Wigand M, Spangenberg E (2005) Geophysical and geochemical effects of supercritical CO2 on sandstones. In: Thomas DC, Benson S (eds) Carbon Dioxide Capture for Storage in Deep Geologic Formations—Results From the CO2 Capture Project, vol 2, pp 767–786, doi:10.1016/B978-008044570-0/50133-1

  • Sibson RH, Rowland JV (2003) Stress, fluid pressure and structural permeability in seismogenetic crust, North Island, New Zealand. Geophy J Int 154:584–594

    Article  Google Scholar 

  • Sorai M, Sasaki M (2010) Dissolution kinetics of anorthite in a supercritical CO2-water system. Am Mineral 95:853–862

    Article  Google Scholar 

  • Streit JE, Hillis RR (2004) Estimating fault stabilityand sustainable fluid pressure for underground storage of CO2 in porous rock. Energy 29:1445–1456

    Article  Google Scholar 

  • Vilarrasa V, Olivella S, Carrera J (2011) Geomechanical stability of the caprock during CO2 sequestration in deep saline aquifers. Energy Proc 4:5306–5313

    Article  Google Scholar 

  • Waza T, Kurita K, Mizutani H (1979) The effect of water on the subcritical crack growth in silicate rocks. Tectonophysics 67:25–34

    Article  Google Scholar 

  • Wibberley CAJ, Shimamoto T (2005) Earthquake slip weakening and asperities explained by thermal pressurization. Nature 436:689–692. doi:10.1038/nature03901

    Article  Google Scholar 

  • Wigand M, Carey JW, Schütt H, Spangenberg E, Erzinger J (2008) Geochemical effects of CO2 geochemistry in sandstones under simulated in situ conditions of deep saline aquifers. Appl Geochem 23:2735–2745

    Article  Google Scholar 

  • Zemke K, Liebscher A, Wandrey M, The CO2SINKGroup (2010) Petrophysical analysis to investigate the effects of carbon dioxide storage in a subsurface saline aquifer at Ketzin, Germany (CO2SINK). Int J Greenhouse Gas Contr 4:990–999

    Article  Google Scholar 

Download references

Acknowledgments

The work was carried out within the German national project COORAL (“CO2 Purity for Capture and Storage”), which is financially supported by the Federal Ministry of Economics and Technology. Third party funding was provided by ALSTOM, EnBW, E.ON, Vattenfall, and VNG. The authors gratefully acknowledge the technicians of the Martin-Luther-University Halle-Wittenberg who executed all geomechanical tests as well as the geochemical analytical work. The authors would like to thank Mr. D. Erickson for revising the English language of the text. We appreciated the comments of the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Herwig Marbler or Kirsten P. Erickson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marbler, H., Erickson, K.P., Schmidt, M. et al. Geomechanical and geochemical effects on sandstones caused by the reaction with supercritical CO2: an experimental approach to in situ conditions in deep geological reservoirs. Environ Earth Sci 69, 1981–1998 (2013). https://doi.org/10.1007/s12665-012-2033-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-012-2033-0

Keywords

Navigation