Skip to main content
Log in

Performance of limestones laden with mixed salt solutions of Na2SO4–NaNO3 and Na2SO4–K2SO4

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The behaviour of two types of limestones having a different porosity, Maastricht and Euville limestone, laden with aqueous solutions of equimolar mixtures of sodium sulphate/sodium nitrate or sodium sulphate/potassium sulphate was investigated. At 50 % RH, the efflorescences on Maastricht samples during the first 30 h of drying consisted of similar amounts of thenardite and darapskite in case of an equimolar mixture of sodium sulphate/sodium nitrate while those on Euville samples under the same conditions contained mainly darapskite. After drying at 20 °C and 85 % RH, thenardite, formed through the precipitation and dehydration of mirabilite, was mostly detected in the efflorescences on both Maastricht and Euville samples. Re-wetting by increasing the RH from 50 to 85 % resulted in substantial damage on Maastricht stone laden with an equimolar mixture of sodium sulphate/sodium nitrate as a consequence of high supersaturation of mirabilite. In case of a contamination with equimolar amounts of sodium sulphate and potassium sulphate, the efflorescence on both limestones during drying at 50 % RH contained predominantly aphthitalite. The observed crystallisation behaviour is compared to the theoretical behaviour. The results indicate a strong influence of stone properties on the crystallisation behaviour of salt mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Benavente D, Cueto N, Matínez-Martínez J, García del Cura MA, Caňaveras JC (2007) The influence of petrophysical properties on the salt weathering of porous building rocks. Environ Geol 52:215–224

    Article  Google Scholar 

  • Charola AE, Lewin SZ (1979) Efflorescences on building stones—SEM in the characterization and elucidation of the mechanisms of formation. Scan Electron Microsc 79(I):379–387

    Google Scholar 

  • Chrétien A (1929) Étude du système quaternaire. Eau, nitrate de sodium, chlorure de sodium, sulfate de sodium. Ann Chim 12:9–155

    Google Scholar 

  • De Clercq H (2008a) Behaviour of limestone contaminated with binary mixtures of sodium sulphate and treated with a water repellent. Restoration of Buildings and Monuments 14:357–364

    Google Scholar 

  • De Clercq H (2008b) The effect of other salts on the crystallization damage to stone caused by sodium sulphate. In: Proceedings of the international conference on salt weathering on buildings and stone sculptures, Denmark, 22–24 October 2008, Technical University of Denmark—Department of Civil Engineering, Lyngby, pp 307–317

  • De Witte E (coordinator) (2002) EU project salt compatibility of surface treatments (SCOST), Contract ENV4-CT98-0710, KIK-IRPA

  • Diaz Gonçalves T, Pel L, Delgado Rodrigues J (2007) Drying of salt-contaminated masonry: MRI laboratory monitoring. Environ Geol 52:293–302

    Article  Google Scholar 

  • Dubelaar CW, Dusar M, Dreesen R, Felder WM, Nijland TG (2006) Maastricht limestone: a regionally significant building stone in Belgium and the Netherlands. Extremely weak yet time-resistant. In: Fort R, de Buergo MA, Gomez-Heras M, Vazquez-Calvo C (eds) Proceedings of the international heritage weathering and conservation conference. Taylor & Francis Group, London, pp 9–14

    Google Scholar 

  • Dusar M, Dreesen R, De Naeyer A (2009) Natuursteen in Vlaanderen. Kluwer, Mechelen

    Google Scholar 

  • Espinosa Marzal RM, Scherer GW (2008) Crystallization of sodium sulfate salts in limestones. Environ Geol 56:605–621

    Article  Google Scholar 

  • Flatt RJ, Steiger M, Scherer GW (2007) A commented translation of the paper by C.W. Correns and W. Steinborn on crystallization pressure. Environ Geol 52:187–203

    Article  Google Scholar 

  • Genkinger S, Putnis A (2007) Crystallisation of sodium sulfate: supersaturation and metastable phases. Environ Geol 52:229–237

    Article  Google Scholar 

  • Gomez-Heras M, Fort F (2007) Patterns of halite (NaCl) crystallisation in building stone conditioned by laboratory heating regimes. Environ Geol 52:259–267

    Article  Google Scholar 

  • Goudie AS (1977) Sodium sulphate weathering and the disintegration of Mohenjo-Daro, Pakistan. Earth Surf Process 2:75–86

    Article  Google Scholar 

  • Grassegger G, Schwarz H-J (2009) Salze und Salzschäden an Bauwerken. In: Schwarz H-J, Steiger M (eds) Salzschäden an Kulturgütern. Ri-Con, Hannover, pp 6–21

    Google Scholar 

  • Grossi CM, Esbert RM, Suárez del Río LM, Montoto M, Laurenzi-Tabasso M (1997) Acoustic emission monitoring to study sodium sulphate crystallization in monumental porous carbonate stones. Stud Conserv 42:115–125

    Article  Google Scholar 

  • Hall C, Hoff WD, Nixon MR (1984) Water movement in porous building materials—VI. Evaporation and drying in brick and block materials. Build Environ 19:13–20

    Article  Google Scholar 

  • Holtkamp MHPC, Heijnen WMM (1991) The mineral darapskite in the efflorescence on two Dutch churches. Stud Conserv 36:175–178

    Article  Google Scholar 

  • Klemm W, Siedel H (2002) A rapid method for the determination of cation exchange capacities of sandstones: preliminary data. Geol Soc Spec Publ 205:419–429

    Article  Google Scholar 

  • Larsen PK (2007) The salt decay of medieval bricks at a vault in Brarup Church, Denmark. Environ Geol 52:375–383

    Google Scholar 

  • Linnow K, Zeunert A, Steiger M (2006) Investigation of sodium sulfate phase transitions in a porous material using humidity and temperature controlled X-ray diffraction. Anal Chem 78:4683–4689

    Article  Google Scholar 

  • Linnow K, Steiger M, Lemster C, De Clercq H, Jovanović M (2012) In situ Raman observation of the crystallization in NaNO3–Na2SO4–H2O solution droplets. Environ Earth Sci. doi:10.1007/s12665-012-1997-0

  • Nord AG (1992) Efflorescence salts on weathered building stone in Sweden. GFF 114:423–429

    Article  Google Scholar 

  • Novak GA, Colville AA (1989) Efflorescent mineral assemblages associated with cracked and degraded residential concrete foundations in southern California. Cem Concr Res 19:1–6

    Article  Google Scholar 

  • Rodriguez-Navarro C, Doehne E, Sebastian E (2000) How does sodium sulfate crystallize? Implications for the decay and testing of building materials. Cem Concr Res 30:1527–1534

    Article  Google Scholar 

  • Roekens E, Leysen E, Stulens E, Philippaerts J, Van Grieken R (1988) Weathering of Maastricht Limestone used in the construction of historical buildings in Limburg, Belgium. In: Ciabach J (ed) Proceedings of the 6th international congress on deterioration and conservation of stone. Nicholas Copernicus University Press Department, Torun, pp 45–56

    Google Scholar 

  • Sawdy A, Heritage A (2007) Evaluating the influence of mixture composition on the kinetics of salt damage in wall paintings using time laps video imaging with direct data annotation. Environ Geol 52:303–315

    Article  Google Scholar 

  • Silcock HL (1979) Solubilities of inorganic and organic compounds. Ternary and multicomponent systems of inorganic substances, vol 3. Pergamon Press, Oxford

    Google Scholar 

  • Steiger M, Asmussen S (2008) Crystallization of sodium sulfate phases in porous materials: the phase diagram Na2SO4–H2O and the generation of stress. Geochim Cosmochim Acta 72:4291–4306

    Article  Google Scholar 

  • Steiger M, Kiekbusch J, Nicolai A (2008) An improved model incorporating Pitzer’s equations for calculation of thermodynamic properties of pore solutions implemented into an efficient program code. Construct Build Mater 22:1841–1850

    Article  Google Scholar 

  • Steiger M, Charola AE, Sterflinger K (2011) Weathering and deterioration. In: Siegesmund S, Snethlage R (eds) Stone in architecture. Springer, Berlin, pp 227–316

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilde De Clercq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Clercq, H., Jovanović, M., Linnow, K. et al. Performance of limestones laden with mixed salt solutions of Na2SO4–NaNO3 and Na2SO4–K2SO4 . Environ Earth Sci 69, 1751–1761 (2013). https://doi.org/10.1007/s12665-012-2017-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-012-2017-0

Keywords

Navigation