Skip to main content

Background levels of potentially toxic metals from soils of the Pisa coastal plain (Tuscany, Italy) as identified from sedimentological criteria

Abstract

Identification of reliable background values of potentially toxic metals in sediments requires detailed integration of geochemical data with accurate sedimentological studies. Through analysis of 60 soil samples from the Pisa coastal plain, this study shows to what extent sediment provenance and facies characteristics may influence the natural distribution of potentially toxic metals (Cr, Ni, Cu, Zn, Pb) within alluvial and coastal sediments. Metals supplied to the alluvial plain are mostly concentrated within the finest sediment fraction (floodplain clays), while coarser crevasse and overbank deposits exhibit invariably lower metal contents. Beach-ridge sands display the lowest metal concentrations. Transport of ophiolitic detritus by the longshore drift may account for locally high Cr concentrations within beach deposits. Geochemical fingerprinting of individual facies associations in terms of natural metal contents results in the construction of a geologically-based geochemical map. This map offers a more reliable depiction of spatial distribution of background levels than interpolation techniques based uniquely upon statistical methods. Matching background values against metal concentrations from topsoil samples leads to the reliable assessment of the pollution status of Pisa coastal plain. Metal contents exceeding the threshold values designated for contaminated areas (Cr) simply reflect catchment geology, and are not the product of artificial contamination. On the other hand, anthropogenic disturbance may be detected even where metal contents (Pb, Cu) lie below the threshold values. The use of sedimentological criteria is presented here as a pragmatic tool to enhance predictability of natural metal contents in sediments, with obvious positive feedbacks for legislative purposes and environmental protection.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Aiello E, Bartolini C, Caputo C, D’Alessandro L, Fanucci F, Fierro G, Gnaccolini M, La Monica GB, Lupia Palmieri E, Piccazzo M, Pranzini E (1975) Il trasporto litoraneo lungo la costa toscana tra la foce del fiume Magra ed i monti dell’Uccellina. Boll Soc Geol It 94:1519–1571

    Google Scholar 

  • Albanese S (2008) Evaluation of the bioavailability of potentially harmful elements in urban soils through ammonium acetate–EDTA extraction: a case study in southern Italy. Geochem Explor Env An 8:49–57

    Article  Google Scholar 

  • Amorosi A, Sammartino I (2005) Geologically-oriented geochemical maps: a new frontier for geochemical mapping? GeoActa 4:1–12

    Google Scholar 

  • Amorosi A, Sammartino I (2007) Influence of sediment provenance on background values of potentially toxic metals from near-surface sediments of Po coastal plain (Italy). Int J Earth Sci 96:389–396

    Article  Google Scholar 

  • Amorosi A, Centineo MC, Dinelli E, Lucchini F, Tateo F (2002) Geochemical and mineralogical variations as indicators of provenance changes in late quaternary deposits of SE Po plain. Sediment Geol 151:273–292

    Article  Google Scholar 

  • Banat KM, Howari FM, Al-Hamad AA (2005) Heavy metals in urban soils of central Jordan: should we worry about their environmental risks? Environ Res 97:258–273

    Article  Google Scholar 

  • Bauluz B, Mayayo MJ, Fernandez-Nieto C, Lopez JMG (2000) Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian range (NE Spain): implications for source-area weathering, sorting, provenance, and tectonic setting. Chem Geol 168:135–150

    Article  Google Scholar 

  • Bech J, Tume P, Sokolovska M, Reverter F, Sanchez P, Longan L, Bech J, Puente A, Oliver T (2008) Pedogeochemical mapping of Cr, Ni, and Cu in soils of the Barcelona Province (Catalonia, Spain): relationships with soil physico-chemical characteristics. J Geochem Explor 96:106–116

    Article  Google Scholar 

  • Bertolotto RM, Tortarolo B, Frignani M, Bellucci LG, Albanese S, Cuneo C, Alvarado-Aguilar D, Picca MR, Gollo E (2005) Heavy metals in surficial coastal sediments of the Ligurian Sea. Mar Pollut Bull 50:348–356

    Article  Google Scholar 

  • Bertoni D, Sarti G (2011) Grain size characterization of modern and ancient dunes within a dune field along the Pisan coast (Tuscany, Italy). Atti Soc Tosc Sc Nat 116:11–16

    Google Scholar 

  • Bianchini G, Laviano R, Lovo S, Vaccaro C (2002) Chemical-mineralogical characterisation of clay sediments around Ferrara (Italy): a tool for environmental analysis. Appl Clay Sci 21:165–176

    Article  Google Scholar 

  • Bonifacio E, Falsone G, Piazza S (2010) Linking Ni and Cr concentrations to soil mineralogy: does it help to assess metal contamination when the natural background is high? J Soil Sediments 10:1475–1486

    Article  Google Scholar 

  • Box S, Wallis JC (2002) Surficial geology along the Spokane River, Washington and its relationship to the metal content of sediments. US Geol Survey Open-File Report 02–126:1–16

    Google Scholar 

  • Carratori L, Ceccarelli Lemut ML, Frattarelli Fischer L et al. (1994) Carta degli elementi naturalistici e storici della Pianura di Pisa e dei rilievi contermini, scala 1:50.000. In: Mazzanti R (a cura di) La pianura di Pisa e i rilievi contermini la natura e la storia. Mem Soc Geogr It 50:491

  • Cortecci G, Dinelli E, Bencini A, Adorni-Braccesi A, La Ruffa G (2002) Natural and anthropogenic SO4 sources in the Arno river catchment, northern Tuscany, Italy: a chemical and isotopic reconnaissance. Appl Geochem 17:79–92

    Article  Google Scholar 

  • Cortecci G, Dinelli E, Boschetti T (2007) The River Arno catchment, northern Tuscany: chemistry of waters and sediments from the River Elsa and River Era sub-basins, and sulphur and oxygen isotopes in aqueous sulphate. Hydrol Process 21:1–20

    Article  Google Scholar 

  • Cortecci G, Dinelli E, Boschetti T et al (2008) The Serchio River catchment, northern Tuscany: geochemistry of stream waters and sediments, and isotopic composition of dissolved sulfate. Appl Geochem 17:79–92

    Article  Google Scholar 

  • Cortecci G, Dinelli E, Boschetti T et al (2009) Geochemistry of trace elements in surface waters of the Arno River Basin, northern Tuscany, Italy. Appl Geochem 24:1005–1022

    Article  Google Scholar 

  • Cosma B, Drago M, Piccazzo M, Scarponi G, Tucci S (1979) Heavy metals in Ligurian sea sediments: distribution of Cr, Cu, Ni, and Mn in superficial sediments. Mar Chem 8:125–142

    Article  Google Scholar 

  • Cosma B, Frache R, Baffi F, Dadone A (1982) Trace metals in sediments from the Ligurian coast, Italy. Mar Pollut Bull 13:127–132

    Article  Google Scholar 

  • Covelli S, Fontolan G (1997) Application of a normalization procedure in determining regional geochemical baselines, Gulf of Trieste, Italy. Environ Geol 30(1–2):34–45

    Article  Google Scholar 

  • Csiki SJC, Martin CW (2008) Spatial variability of heavy-metal storage in the floodplain of the Alamosa river, Colorado. Phys Geogr 29:306–319

    Article  Google Scholar 

  • Daskalakis KD, O’Connor TP (1995) Normalization and elemental sediment contamination in the coastal United States. Environ Sci Technol 29:470–477

    Article  Google Scholar 

  • Devesa-Rey R, Díaz-Fierros F, Barral MT (2011) Assessment of enrichment factors and grain size influence on the metal distribution in riverbed sediments (Anllóns River, NW Spain). Environ Monit Assess 179:371–388

    Article  Google Scholar 

  • Dinelli E, Cortecci G, Lucchini F, Zantedeschi E (2005) Sources of major and trace elements in the stream sediments of the Arno river catchment (northern Tuscany, Italy). Geochem J 39:531–545

    Article  Google Scholar 

  • Dinelli E, Tateo F, Summa V (2007) Geochemical and mineralogical proxies for grain size in mudstones and siltstones from the Pleistocene and Holocene of the Po river alluvial plain, Italy. In: Arribas J, Critelli S, Johnsson MJ (eds) Sedimentary provenance and petrogenesis: perspectives from petrography and geochemistry. Geol Soc of Am Spec Pap 420:25–36

  • Feng R, Kerrich R (1990) Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstone belt, Canada: implications for provenance and tectonic setting. Geochim Cosmochim Acta 54:1061–1081

    Article  Google Scholar 

  • Förstner U, Müller G (1981) Concentrations of heavy metals and polyciclic aromatic hydrocarbons in river sediments: geochemical background, man’s influence and environmental impact. GeoJournal 5:417–432

    Article  Google Scholar 

  • Franzini M, Leoni L, Saitta M (1972) A simple method to evaluate the matrix effects in X-ray fluorescence analysis. X-Ray Spectrom 1:151–154

    Article  Google Scholar 

  • Franzini M, Leoni L, Saitta M (1975) Revisione di una metodologia analitica per fluorescenza-X basata sulla correzione completa degli effetti di matrice. Rend Soc It Min Petr 31:365–378

    Google Scholar 

  • Galán E, Fernández-Caliani JC, González I, Aparicio P, Romero A (2008) Influence of geological setting on geochemical baselines of trace elements in soils. Application to soils of South–West Spain. J Geochem Explor 98:89–106

    Article  Google Scholar 

  • Gandolfi G, Paganelli L (1975) Il litorale pisano-versiliese (area campione Alto Tirreno). Composizione, provenienza e dispersione delle sabbie. Boll Soc Geol It 94:1273–1295

    Google Scholar 

  • Garrett RG, Reimann C, Smith DB, Xie X (2008) From geochemical prospecting to international geochemical mapping: a historical overview. Geochem Explor Env An 8:205–217

    Article  Google Scholar 

  • Garver JI, Royce PR, Smick TA (1996) Chromium and nickel in shale of the Taconic foreland: a case study for the provenance of fine-grained sediments with an ultramafic source. J Sediment Res 66:100–106

    Google Scholar 

  • Garzanti E, Canclini S, Moretti Foggia F, Petrella N (2002) Unrevelling magmatic and orogenic provenance in modern sand: the back-arc side of the Apennine thrust belt, Italy. J Sediment Res 72:69–97

    Article  Google Scholar 

  • Gazzi P, Zuffa GG (1970) Le arenarie paleogeniche dell’Appennino emiliano. Min Petr Acta 12:97–137

    Google Scholar 

  • Govindaraju K (1989) Compilation of working values and samples description for 272 geostandards. Geostand Geoanal Res 13:1–113

    Article  Google Scholar 

  • Grassi S, Cortecci G (2005) Hydrogeology and geochemistry of the multilayered confined aquifer of the Pisa plain (Tuscany–central Italy). Appl Geochem 20:41–54

    Article  Google Scholar 

  • He C, Bartholdy J, Christiansen C (2012) Clay mineralogy, grain size distribution and their correlations with trace metals in the salt marsh sediments of the Skallingen barrier spit, Danish Wadden sea. Environ Earth Sci 67:759–769

    Google Scholar 

  • Huisman DJ, Vermeulen FJH, Baker J, Veldkamp A, Kroonenberg SB, Th Klaver G (1997) A geological interpretation of heavy metal concentrations in soils and sediments in the southern Netherlands. J Geochem Expl 59:163–174

    Article  Google Scholar 

  • Krüger F, Meissner R, Gröngröft A, Grunewald K (2005) Flood induced heavy metal and arsenic contamination of Elbe river floodplain soils. Acta Hydrochim Hydrobiol 33:455–465

    Article  Google Scholar 

  • Lazzarotto A, Mazzanti R, Nencini C (1990) Geologia e geomorfologia dei comuni di Livorno e Collesalvetti. Quad Mus St Nat Livorno 11:1–85

    Google Scholar 

  • Leoni L, Saitta M (1976) X-ray fluorescence analysis of 29 trace elements in rock and mineral standard. Rend Soc It Min Petr 32:497–510

    Google Scholar 

  • Leoni L, Sartori F (1996) Heavy metals and arsenic in sediments from the continental shelf of the Northern Tyrrhenian/Eastern Ligurian seas. Mar Environ Res 41:73–98

    Article  Google Scholar 

  • Leoni L, Menichini M, Saitta M (1986) Determination of S, Cl and F in silicate rocks by X-ray fluorescence analysis. X-Ray Spectrom 11:156–158

    Article  Google Scholar 

  • Leoni L, Sartori F, Damiani V, Ferretti O, Viel M (1991) Trace element distributions in surficial sediments of the Northern Tyrrhenian Sea: contribution to heavy-metal pollution assessment. Environ Geol 17:103–116

    Google Scholar 

  • Liaghati T, Preda M, Cox M (2003) Heavy metal distribution and controlling factors within coastal plain sediments, Bells Creek catchment, southeast Queensland, Australia. Environ Int 29:935–948

    Article  Google Scholar 

  • Liu S, Shi X, Liu Y, Zhu Z, Yang G, Zhu A, Gao J (2011) Concentration distribution and assessment of heavy metals in sediments of mud area from inner continental shelf of the East China sea. Environ Earth Sci 64:567–579

    Article  Google Scholar 

  • Loring DH (1991) Normalization of heavy-metal data from estuarine and coastal sediments. ICES J Mar Sci 48:101–115

    Article  Google Scholar 

  • Lužar-Oberiter B, Mikes T, von Eynatten H, Babic L (2009) Ophiolitic detritus in Cretaceous clastic formations of the Dinarides (NW Croatia): evidence from Cr-spinel chemistry. Int J Earth Sci 98:1097–1108

    Article  Google Scholar 

  • Madrid L, Diaz-Barrientos E, Ruiz-Cortés E, Reinoso R, Biasioli M et al (2006) Variability in concentrations of potentially toxic elements in urban parks from six European cities. J Environ Monit 8:1158–1165

    Article  Google Scholar 

  • Martin CW (2000) Heavy metal trends in floodplain sediments and valley fill, River Lahn, Germany. Catena 39:53–68

    Article  Google Scholar 

  • Middelkoop H (2002) Heavy-metal pollution of the river Rhine and Meuse floodplains in the Netherlands. Neth J Geosci 74:411–428

    Google Scholar 

  • Middelkoop H, Thonon I, Van der Perk M (2002) Effective discharge for heavy metal deposition on the lower Rhine river flood plains, IAHS Publ 276. Alice Springs, Australia, pp 151–159

  • Miller JR (1997) The role of fluvial geomorphic processes in the dispersal of heavy metals from mine sites. J Geochem Explor 58:101–118

    Article  Google Scholar 

  • Mugnai C, Bertolotto RM, Gaino F, Tiberiade C, Bellucci LG, Giuliani S, Romano S, Frignani M, Albertazzi S, Galazzo D (2010) History and trends of sediment contamination by heavy metals within and close to a marine area of national interest: the Ligurian Sea off Cogoleto-Stoppani (Genoa, Italy). Water Air Soil Pollut 211:69–77

    Article  Google Scholar 

  • Müller G (1979) Schwermetalle in den sedimenten des Rheins-Verändergunten seit 1971. Umschan 79:778–783

    Google Scholar 

  • Müller G (1981) Die Schwermetallbelastung der Sedimente des Neckars und seiner Nebenflusse: eine Bestandsaufnahme. Chem unserer Zeit 105:157–164

    Google Scholar 

  • Myers J, Thorbjornsen K (2004) Identifying metals contamination in soil: a geochemical approach. Soil Sedim Contamin 13:1–16

    Article  Google Scholar 

  • Nisi B, Buccianti A, Vaselli O, Perini G, Tasi F, Minissale A, Montegrossi G (2008) Hydrogeochemistry and strontium isotopes in the Arno river basin (Tuscany, Italy): constraints on natural controls by statistical modelling. J Hydrol 360:166–183

    Article  Google Scholar 

  • Plant J, Smith D, Smith B, Williams L (2001) Environmental geochemistry at the global scale. Appl Geochem 16:1291–1308

    Article  Google Scholar 

  • Reimann C (2005) Geochemical mapping: technique or art? Geochem Explor Env An 5:359–370

    Article  Google Scholar 

  • Reimann C, Garrett RG (2005) Geochemical background—concept and reality. Sci Total Environ 350:12–27

    Article  Google Scholar 

  • Rubio B, Nombela MA, Vilas F (2000) Geochemistry of major and trace elements in geochemistry of de Ria de Vigo (NW Spain): an assessment of metal pollution. Mar Pollut Bull 40:968–980

    Article  Google Scholar 

  • Sainz A, Ruiz F (2006) Influence of the very polluted inputs of the Tinto-Odiel system on the adjacent littoral sediments of southwestern Spain: a statistical approach. Chemosphere 62:1612–1622

    Article  Google Scholar 

  • Salminen R, Tarvainen T (1997) The problem of defining geochemical baselines. A case study of selected elements and geological materials in Finland. J Geochem Expl 60:91–98

    Article  Google Scholar 

  • Sammartino I (2004) Heavy-metal anomalies and bioavailability from soils of southeastern Po plain. GeoActa 3:35–42

    Google Scholar 

  • Sammartino I, Amorosi A, Guermandi M, Marchi N (2007) The Pedogeochemical Map of Parma alluvial plain: contribution of soil studies to geochemical mapping. GeoActa 6:11–23

    Google Scholar 

  • Sarti G, Bini M, Serena G (2010) The growth and the decline of Pisa (Tuscany, Italy) up to the Middle ages: correlations with landscape and geology. In: G Sarti, IP Martini (eds), Geological setting and urban development of selected Italian towns up to the Middle ages and legacies of ancient problems throughout the ages. Il Quaternario—It J Quat Sci 23(2Bis):311–322

  • Singh P, Rajamani V (2001) Geochemistry of the floodplain sediments of the Kaveri river, southern India. J Sed Res 71:50–60

    Article  Google Scholar 

  • Singh AK, Hasnain SI, Banerjee DK (1999) Grain size and geochemical partitioning of heavy metals in sediments of the Damodar River—a tributary of the lower Ganga, India. Environ Geol 39:90–98

    Article  Google Scholar 

  • Sutherland RA (2000) Depth variation in copper, lead, and zinc concentrations and mass enrichment ratios in soils of an urban watershed. J Environ Qual 29:1414–1422

    Article  Google Scholar 

  • Ungherese G, Baroni D, Focardi S, Ugolini A (2010) Trace metal contamination of Tuscan and eastern Corsican coastal supralittoral zones: the sandhopper Talitrus saltator (Montagu) as a biomonitor. Ecotoxicol Environ Safety 73:1919–1924

    Article  Google Scholar 

  • Vital H, Stattegger K (2000) Major and trace elements of stream sediments from the lowermost Amazon river. Chem Geol 168:151–168

    Article  Google Scholar 

  • von Eynatten H (2003) Petrography and chemistry of sandstones from the Swiss Molasse Basin: an archive of the Oligo-/Miocene evolution of the central Alps. Sedimentology 50:703–725

    Article  Google Scholar 

  • Wang Z, Darilek JL, Zhao Y, Huang B, Sun W (2011) Defining soil geochemical baselines at small scale using geochemical common factors and soil organic matter as normalizers. J Soils Sediments 11:3–14

    Article  Google Scholar 

  • Whitmore GP, Crook KAW, Johnson DP (2004) Grain size control of mineralogy and geochemistry in modern river sediment, New Guinea collision, Papua New Guinea. Sediment Geol 171:129–157

    Article  Google Scholar 

  • Wolfenden PJ, Lewin J (1978) Distribution of metal pollutants in active stream sediments. Catena 5:67–78

    Article  Google Scholar 

  • Zhang W, Yu L, Hutchinson SM, Xu S, Chen Z, Gao X (2001) China’s Yangtze Estuary: I. Geomorphic influence on heavy metal accumulation in intertidal sediments. Geomorphology 41:195–205

    Article  Google Scholar 

  • Zhang L, Wang L, Yin K, Lv Y, Zhang D (2009) Environmental–geochemical characteristics of Cu in the soil and water in copper-rich deposit area of southeastern Hubei Province, along the middle Yangtze river, central China. Environ Pollut 157:2957–2963

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Amorosi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Amorosi, A., Sammartino, I. & Sarti, G. Background levels of potentially toxic metals from soils of the Pisa coastal plain (Tuscany, Italy) as identified from sedimentological criteria. Environ Earth Sci 69, 1661–1671 (2013). https://doi.org/10.1007/s12665-012-2001-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-012-2001-8

Keywords

  • Background values
  • Metal pollution
  • Sedimentology
  • Geochemical anomalies
  • Tuscany