Environmental Earth Sciences

, Volume 69, Issue 5, pp 1661–1671 | Cite as

Background levels of potentially toxic metals from soils of the Pisa coastal plain (Tuscany, Italy) as identified from sedimentological criteria

  • Alessandro AmorosiEmail author
  • Irene Sammartino
  • Giovanni Sarti
Original Article


Identification of reliable background values of potentially toxic metals in sediments requires detailed integration of geochemical data with accurate sedimentological studies. Through analysis of 60 soil samples from the Pisa coastal plain, this study shows to what extent sediment provenance and facies characteristics may influence the natural distribution of potentially toxic metals (Cr, Ni, Cu, Zn, Pb) within alluvial and coastal sediments. Metals supplied to the alluvial plain are mostly concentrated within the finest sediment fraction (floodplain clays), while coarser crevasse and overbank deposits exhibit invariably lower metal contents. Beach-ridge sands display the lowest metal concentrations. Transport of ophiolitic detritus by the longshore drift may account for locally high Cr concentrations within beach deposits. Geochemical fingerprinting of individual facies associations in terms of natural metal contents results in the construction of a geologically-based geochemical map. This map offers a more reliable depiction of spatial distribution of background levels than interpolation techniques based uniquely upon statistical methods. Matching background values against metal concentrations from topsoil samples leads to the reliable assessment of the pollution status of Pisa coastal plain. Metal contents exceeding the threshold values designated for contaminated areas (Cr) simply reflect catchment geology, and are not the product of artificial contamination. On the other hand, anthropogenic disturbance may be detected even where metal contents (Pb, Cu) lie below the threshold values. The use of sedimentological criteria is presented here as a pragmatic tool to enhance predictability of natural metal contents in sediments, with obvious positive feedbacks for legislative purposes and environmental protection.


Background values Metal pollution Sedimentology Geochemical anomalies Tuscany 


  1. Aiello E, Bartolini C, Caputo C, D’Alessandro L, Fanucci F, Fierro G, Gnaccolini M, La Monica GB, Lupia Palmieri E, Piccazzo M, Pranzini E (1975) Il trasporto litoraneo lungo la costa toscana tra la foce del fiume Magra ed i monti dell’Uccellina. Boll Soc Geol It 94:1519–1571Google Scholar
  2. Albanese S (2008) Evaluation of the bioavailability of potentially harmful elements in urban soils through ammonium acetate–EDTA extraction: a case study in southern Italy. Geochem Explor Env An 8:49–57CrossRefGoogle Scholar
  3. Amorosi A, Sammartino I (2005) Geologically-oriented geochemical maps: a new frontier for geochemical mapping? GeoActa 4:1–12Google Scholar
  4. Amorosi A, Sammartino I (2007) Influence of sediment provenance on background values of potentially toxic metals from near-surface sediments of Po coastal plain (Italy). Int J Earth Sci 96:389–396CrossRefGoogle Scholar
  5. Amorosi A, Centineo MC, Dinelli E, Lucchini F, Tateo F (2002) Geochemical and mineralogical variations as indicators of provenance changes in late quaternary deposits of SE Po plain. Sediment Geol 151:273–292CrossRefGoogle Scholar
  6. Banat KM, Howari FM, Al-Hamad AA (2005) Heavy metals in urban soils of central Jordan: should we worry about their environmental risks? Environ Res 97:258–273CrossRefGoogle Scholar
  7. Bauluz B, Mayayo MJ, Fernandez-Nieto C, Lopez JMG (2000) Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian range (NE Spain): implications for source-area weathering, sorting, provenance, and tectonic setting. Chem Geol 168:135–150CrossRefGoogle Scholar
  8. Bech J, Tume P, Sokolovska M, Reverter F, Sanchez P, Longan L, Bech J, Puente A, Oliver T (2008) Pedogeochemical mapping of Cr, Ni, and Cu in soils of the Barcelona Province (Catalonia, Spain): relationships with soil physico-chemical characteristics. J Geochem Explor 96:106–116CrossRefGoogle Scholar
  9. Bertolotto RM, Tortarolo B, Frignani M, Bellucci LG, Albanese S, Cuneo C, Alvarado-Aguilar D, Picca MR, Gollo E (2005) Heavy metals in surficial coastal sediments of the Ligurian Sea. Mar Pollut Bull 50:348–356CrossRefGoogle Scholar
  10. Bertoni D, Sarti G (2011) Grain size characterization of modern and ancient dunes within a dune field along the Pisan coast (Tuscany, Italy). Atti Soc Tosc Sc Nat 116:11–16Google Scholar
  11. Bianchini G, Laviano R, Lovo S, Vaccaro C (2002) Chemical-mineralogical characterisation of clay sediments around Ferrara (Italy): a tool for environmental analysis. Appl Clay Sci 21:165–176CrossRefGoogle Scholar
  12. Bonifacio E, Falsone G, Piazza S (2010) Linking Ni and Cr concentrations to soil mineralogy: does it help to assess metal contamination when the natural background is high? J Soil Sediments 10:1475–1486CrossRefGoogle Scholar
  13. Box S, Wallis JC (2002) Surficial geology along the Spokane River, Washington and its relationship to the metal content of sediments. US Geol Survey Open-File Report 02–126:1–16Google Scholar
  14. Carratori L, Ceccarelli Lemut ML, Frattarelli Fischer L et al. (1994) Carta degli elementi naturalistici e storici della Pianura di Pisa e dei rilievi contermini, scala 1:50.000. In: Mazzanti R (a cura di) La pianura di Pisa e i rilievi contermini la natura e la storia. Mem Soc Geogr It 50:491Google Scholar
  15. Cortecci G, Dinelli E, Bencini A, Adorni-Braccesi A, La Ruffa G (2002) Natural and anthropogenic SO4 sources in the Arno river catchment, northern Tuscany, Italy: a chemical and isotopic reconnaissance. Appl Geochem 17:79–92CrossRefGoogle Scholar
  16. Cortecci G, Dinelli E, Boschetti T (2007) The River Arno catchment, northern Tuscany: chemistry of waters and sediments from the River Elsa and River Era sub-basins, and sulphur and oxygen isotopes in aqueous sulphate. Hydrol Process 21:1–20CrossRefGoogle Scholar
  17. Cortecci G, Dinelli E, Boschetti T et al (2008) The Serchio River catchment, northern Tuscany: geochemistry of stream waters and sediments, and isotopic composition of dissolved sulfate. Appl Geochem 17:79–92CrossRefGoogle Scholar
  18. Cortecci G, Dinelli E, Boschetti T et al (2009) Geochemistry of trace elements in surface waters of the Arno River Basin, northern Tuscany, Italy. Appl Geochem 24:1005–1022CrossRefGoogle Scholar
  19. Cosma B, Drago M, Piccazzo M, Scarponi G, Tucci S (1979) Heavy metals in Ligurian sea sediments: distribution of Cr, Cu, Ni, and Mn in superficial sediments. Mar Chem 8:125–142CrossRefGoogle Scholar
  20. Cosma B, Frache R, Baffi F, Dadone A (1982) Trace metals in sediments from the Ligurian coast, Italy. Mar Pollut Bull 13:127–132CrossRefGoogle Scholar
  21. Covelli S, Fontolan G (1997) Application of a normalization procedure in determining regional geochemical baselines, Gulf of Trieste, Italy. Environ Geol 30(1–2):34–45CrossRefGoogle Scholar
  22. Csiki SJC, Martin CW (2008) Spatial variability of heavy-metal storage in the floodplain of the Alamosa river, Colorado. Phys Geogr 29:306–319CrossRefGoogle Scholar
  23. Daskalakis KD, O’Connor TP (1995) Normalization and elemental sediment contamination in the coastal United States. Environ Sci Technol 29:470–477CrossRefGoogle Scholar
  24. Devesa-Rey R, Díaz-Fierros F, Barral MT (2011) Assessment of enrichment factors and grain size influence on the metal distribution in riverbed sediments (Anllóns River, NW Spain). Environ Monit Assess 179:371–388CrossRefGoogle Scholar
  25. Dinelli E, Cortecci G, Lucchini F, Zantedeschi E (2005) Sources of major and trace elements in the stream sediments of the Arno river catchment (northern Tuscany, Italy). Geochem J 39:531–545CrossRefGoogle Scholar
  26. Dinelli E, Tateo F, Summa V (2007) Geochemical and mineralogical proxies for grain size in mudstones and siltstones from the Pleistocene and Holocene of the Po river alluvial plain, Italy. In: Arribas J, Critelli S, Johnsson MJ (eds) Sedimentary provenance and petrogenesis: perspectives from petrography and geochemistry. Geol Soc of Am Spec Pap 420:25–36Google Scholar
  27. Feng R, Kerrich R (1990) Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstone belt, Canada: implications for provenance and tectonic setting. Geochim Cosmochim Acta 54:1061–1081CrossRefGoogle Scholar
  28. Förstner U, Müller G (1981) Concentrations of heavy metals and polyciclic aromatic hydrocarbons in river sediments: geochemical background, man’s influence and environmental impact. GeoJournal 5:417–432CrossRefGoogle Scholar
  29. Franzini M, Leoni L, Saitta M (1972) A simple method to evaluate the matrix effects in X-ray fluorescence analysis. X-Ray Spectrom 1:151–154CrossRefGoogle Scholar
  30. Franzini M, Leoni L, Saitta M (1975) Revisione di una metodologia analitica per fluorescenza-X basata sulla correzione completa degli effetti di matrice. Rend Soc It Min Petr 31:365–378Google Scholar
  31. Galán E, Fernández-Caliani JC, González I, Aparicio P, Romero A (2008) Influence of geological setting on geochemical baselines of trace elements in soils. Application to soils of South–West Spain. J Geochem Explor 98:89–106CrossRefGoogle Scholar
  32. Gandolfi G, Paganelli L (1975) Il litorale pisano-versiliese (area campione Alto Tirreno). Composizione, provenienza e dispersione delle sabbie. Boll Soc Geol It 94:1273–1295Google Scholar
  33. Garrett RG, Reimann C, Smith DB, Xie X (2008) From geochemical prospecting to international geochemical mapping: a historical overview. Geochem Explor Env An 8:205–217CrossRefGoogle Scholar
  34. Garver JI, Royce PR, Smick TA (1996) Chromium and nickel in shale of the Taconic foreland: a case study for the provenance of fine-grained sediments with an ultramafic source. J Sediment Res 66:100–106Google Scholar
  35. Garzanti E, Canclini S, Moretti Foggia F, Petrella N (2002) Unrevelling magmatic and orogenic provenance in modern sand: the back-arc side of the Apennine thrust belt, Italy. J Sediment Res 72:69–97CrossRefGoogle Scholar
  36. Gazzi P, Zuffa GG (1970) Le arenarie paleogeniche dell’Appennino emiliano. Min Petr Acta 12:97–137Google Scholar
  37. Govindaraju K (1989) Compilation of working values and samples description for 272 geostandards. Geostand Geoanal Res 13:1–113CrossRefGoogle Scholar
  38. Grassi S, Cortecci G (2005) Hydrogeology and geochemistry of the multilayered confined aquifer of the Pisa plain (Tuscany–central Italy). Appl Geochem 20:41–54CrossRefGoogle Scholar
  39. He C, Bartholdy J, Christiansen C (2012) Clay mineralogy, grain size distribution and their correlations with trace metals in the salt marsh sediments of the Skallingen barrier spit, Danish Wadden sea. Environ Earth Sci 67:759–769Google Scholar
  40. Huisman DJ, Vermeulen FJH, Baker J, Veldkamp A, Kroonenberg SB, Th Klaver G (1997) A geological interpretation of heavy metal concentrations in soils and sediments in the southern Netherlands. J Geochem Expl 59:163–174CrossRefGoogle Scholar
  41. Krüger F, Meissner R, Gröngröft A, Grunewald K (2005) Flood induced heavy metal and arsenic contamination of Elbe river floodplain soils. Acta Hydrochim Hydrobiol 33:455–465CrossRefGoogle Scholar
  42. Lazzarotto A, Mazzanti R, Nencini C (1990) Geologia e geomorfologia dei comuni di Livorno e Collesalvetti. Quad Mus St Nat Livorno 11:1–85Google Scholar
  43. Leoni L, Saitta M (1976) X-ray fluorescence analysis of 29 trace elements in rock and mineral standard. Rend Soc It Min Petr 32:497–510Google Scholar
  44. Leoni L, Sartori F (1996) Heavy metals and arsenic in sediments from the continental shelf of the Northern Tyrrhenian/Eastern Ligurian seas. Mar Environ Res 41:73–98CrossRefGoogle Scholar
  45. Leoni L, Menichini M, Saitta M (1986) Determination of S, Cl and F in silicate rocks by X-ray fluorescence analysis. X-Ray Spectrom 11:156–158CrossRefGoogle Scholar
  46. Leoni L, Sartori F, Damiani V, Ferretti O, Viel M (1991) Trace element distributions in surficial sediments of the Northern Tyrrhenian Sea: contribution to heavy-metal pollution assessment. Environ Geol 17:103–116Google Scholar
  47. Liaghati T, Preda M, Cox M (2003) Heavy metal distribution and controlling factors within coastal plain sediments, Bells Creek catchment, southeast Queensland, Australia. Environ Int 29:935–948CrossRefGoogle Scholar
  48. Liu S, Shi X, Liu Y, Zhu Z, Yang G, Zhu A, Gao J (2011) Concentration distribution and assessment of heavy metals in sediments of mud area from inner continental shelf of the East China sea. Environ Earth Sci 64:567–579CrossRefGoogle Scholar
  49. Loring DH (1991) Normalization of heavy-metal data from estuarine and coastal sediments. ICES J Mar Sci 48:101–115CrossRefGoogle Scholar
  50. Lužar-Oberiter B, Mikes T, von Eynatten H, Babic L (2009) Ophiolitic detritus in Cretaceous clastic formations of the Dinarides (NW Croatia): evidence from Cr-spinel chemistry. Int J Earth Sci 98:1097–1108CrossRefGoogle Scholar
  51. Madrid L, Diaz-Barrientos E, Ruiz-Cortés E, Reinoso R, Biasioli M et al (2006) Variability in concentrations of potentially toxic elements in urban parks from six European cities. J Environ Monit 8:1158–1165CrossRefGoogle Scholar
  52. Martin CW (2000) Heavy metal trends in floodplain sediments and valley fill, River Lahn, Germany. Catena 39:53–68CrossRefGoogle Scholar
  53. Middelkoop H (2002) Heavy-metal pollution of the river Rhine and Meuse floodplains in the Netherlands. Neth J Geosci 74:411–428Google Scholar
  54. Middelkoop H, Thonon I, Van der Perk M (2002) Effective discharge for heavy metal deposition on the lower Rhine river flood plains, IAHS Publ 276. Alice Springs, Australia, pp 151–159Google Scholar
  55. Miller JR (1997) The role of fluvial geomorphic processes in the dispersal of heavy metals from mine sites. J Geochem Explor 58:101–118CrossRefGoogle Scholar
  56. Mugnai C, Bertolotto RM, Gaino F, Tiberiade C, Bellucci LG, Giuliani S, Romano S, Frignani M, Albertazzi S, Galazzo D (2010) History and trends of sediment contamination by heavy metals within and close to a marine area of national interest: the Ligurian Sea off Cogoleto-Stoppani (Genoa, Italy). Water Air Soil Pollut 211:69–77CrossRefGoogle Scholar
  57. Müller G (1979) Schwermetalle in den sedimenten des Rheins-Verändergunten seit 1971. Umschan 79:778–783Google Scholar
  58. Müller G (1981) Die Schwermetallbelastung der Sedimente des Neckars und seiner Nebenflusse: eine Bestandsaufnahme. Chem unserer Zeit 105:157–164Google Scholar
  59. Myers J, Thorbjornsen K (2004) Identifying metals contamination in soil: a geochemical approach. Soil Sedim Contamin 13:1–16CrossRefGoogle Scholar
  60. Nisi B, Buccianti A, Vaselli O, Perini G, Tasi F, Minissale A, Montegrossi G (2008) Hydrogeochemistry and strontium isotopes in the Arno river basin (Tuscany, Italy): constraints on natural controls by statistical modelling. J Hydrol 360:166–183CrossRefGoogle Scholar
  61. Plant J, Smith D, Smith B, Williams L (2001) Environmental geochemistry at the global scale. Appl Geochem 16:1291–1308CrossRefGoogle Scholar
  62. Reimann C (2005) Geochemical mapping: technique or art? Geochem Explor Env An 5:359–370CrossRefGoogle Scholar
  63. Reimann C, Garrett RG (2005) Geochemical background—concept and reality. Sci Total Environ 350:12–27CrossRefGoogle Scholar
  64. Rubio B, Nombela MA, Vilas F (2000) Geochemistry of major and trace elements in geochemistry of de Ria de Vigo (NW Spain): an assessment of metal pollution. Mar Pollut Bull 40:968–980CrossRefGoogle Scholar
  65. Sainz A, Ruiz F (2006) Influence of the very polluted inputs of the Tinto-Odiel system on the adjacent littoral sediments of southwestern Spain: a statistical approach. Chemosphere 62:1612–1622CrossRefGoogle Scholar
  66. Salminen R, Tarvainen T (1997) The problem of defining geochemical baselines. A case study of selected elements and geological materials in Finland. J Geochem Expl 60:91–98CrossRefGoogle Scholar
  67. Sammartino I (2004) Heavy-metal anomalies and bioavailability from soils of southeastern Po plain. GeoActa 3:35–42Google Scholar
  68. Sammartino I, Amorosi A, Guermandi M, Marchi N (2007) The Pedogeochemical Map of Parma alluvial plain: contribution of soil studies to geochemical mapping. GeoActa 6:11–23Google Scholar
  69. Sarti G, Bini M, Serena G (2010) The growth and the decline of Pisa (Tuscany, Italy) up to the Middle ages: correlations with landscape and geology. In: G Sarti, IP Martini (eds), Geological setting and urban development of selected Italian towns up to the Middle ages and legacies of ancient problems throughout the ages. Il Quaternario—It J Quat Sci 23(2Bis):311–322Google Scholar
  70. Singh P, Rajamani V (2001) Geochemistry of the floodplain sediments of the Kaveri river, southern India. J Sed Res 71:50–60CrossRefGoogle Scholar
  71. Singh AK, Hasnain SI, Banerjee DK (1999) Grain size and geochemical partitioning of heavy metals in sediments of the Damodar River—a tributary of the lower Ganga, India. Environ Geol 39:90–98CrossRefGoogle Scholar
  72. Sutherland RA (2000) Depth variation in copper, lead, and zinc concentrations and mass enrichment ratios in soils of an urban watershed. J Environ Qual 29:1414–1422CrossRefGoogle Scholar
  73. Ungherese G, Baroni D, Focardi S, Ugolini A (2010) Trace metal contamination of Tuscan and eastern Corsican coastal supralittoral zones: the sandhopper Talitrus saltator (Montagu) as a biomonitor. Ecotoxicol Environ Safety 73:1919–1924CrossRefGoogle Scholar
  74. Vital H, Stattegger K (2000) Major and trace elements of stream sediments from the lowermost Amazon river. Chem Geol 168:151–168CrossRefGoogle Scholar
  75. von Eynatten H (2003) Petrography and chemistry of sandstones from the Swiss Molasse Basin: an archive of the Oligo-/Miocene evolution of the central Alps. Sedimentology 50:703–725CrossRefGoogle Scholar
  76. Wang Z, Darilek JL, Zhao Y, Huang B, Sun W (2011) Defining soil geochemical baselines at small scale using geochemical common factors and soil organic matter as normalizers. J Soils Sediments 11:3–14CrossRefGoogle Scholar
  77. Whitmore GP, Crook KAW, Johnson DP (2004) Grain size control of mineralogy and geochemistry in modern river sediment, New Guinea collision, Papua New Guinea. Sediment Geol 171:129–157CrossRefGoogle Scholar
  78. Wolfenden PJ, Lewin J (1978) Distribution of metal pollutants in active stream sediments. Catena 5:67–78CrossRefGoogle Scholar
  79. Zhang W, Yu L, Hutchinson SM, Xu S, Chen Z, Gao X (2001) China’s Yangtze Estuary: I. Geomorphic influence on heavy metal accumulation in intertidal sediments. Geomorphology 41:195–205CrossRefGoogle Scholar
  80. Zhang L, Wang L, Yin K, Lv Y, Zhang D (2009) Environmental–geochemical characteristics of Cu in the soil and water in copper-rich deposit area of southeastern Hubei Province, along the middle Yangtze river, central China. Environ Pollut 157:2957–2963CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alessandro Amorosi
    • 1
    Email author
  • Irene Sammartino
    • 2
  • Giovanni Sarti
    • 3
  1. 1.Department of Biological, Earth and Environmental SciencesUniversity of BolognaBolognaItaly
  2. 2.Geologic ConsultantBolognaItaly
  3. 3.Department of Earth SciencesUniversity of PisaPisaItaly

Personalised recommendations