Skip to main content
Log in

Quantification of the water balance and hydrogeological processes of groundwater–lake interactions in the Pampa Plain, Argentina

Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This paper gives an account of the assessment and quantification of the water balance and the hydrogeological processes related to lake–groundwater interaction in the Pampa Plain by using hydrogeochemical, isotopic and flow numerical modeling techniques. La Salada is a permanent shallow lake, with an area of 5.8 km2, located on the SE of Buenos Aires Province. A total of 29 lake water samples and 15 groundwater samples were collected for both hydrochemical analysis and environmental stable isotope determination. Water table depths were measured in wells closed to the lake. Groundwater samples appear grouped on the Local Meteoric Water Line, suggesting a well-mixed system and that rainfall is the main recharge source to the aquifer. Water evaporation process within La Salada is also corroborated by its isotopic composition. The model that best adjusts to La Salada Lake hydrochemical processes includes evaporation from groundwater, calcite precipitation with CO2 release and cationic exchange. The annual water balance terms for the lake basin indicates for each hydrological component the following values: 1.16 E08 m3 rainfall, 8.15 E07 m3 evapotranspiration, 1.90 E06 m3 runoff, 1.55 E07 m3 groundwater recharge, 6.01 E06 m3 groundwater discharge to the lake, 9.54 E06 m3 groundwater discharge to the river, 5.00 E05 m3 urban extraction and 4.90 E06 m3 lake evaporation. Integrated analysis of hydrochemical and isotopic information helped to calibrate the groundwater flow model, to validate the conceptual model and to quantitatively assess the basin water balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Allen RG, Pruitt WO, Wright JL, Howell TA, Ventura F, Snyder R, Itenfisu D, Steduto P, Berengena J, Beselga J, Smith M, Pereira LS, Raes D, Perrier A, Alves I, Walter I, Elliott R (2006) A recommendation on standardized surface resistance for hourly calculation of reference EToby the FAO56 Penman–Monteith method. Agric Water Manag 81:1–22

    Article  Google Scholar 

  • APHA (American Public Health Association) (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, American Water Works Association, Water Environment Federation, Washington

  • MA (Millennium Ecosystem Assessment) (2005) Ecosystems and human well-being: wetlands and water synthesis. Millennium Ecosystem Assessment report to the Ramsar Convention, World Resources Institute, Washington

  • Auge M (2004) Vulnerabilidad de acuíferos (Aquifer vulnerability). Revista Latino-Americana de Hidrogeologia 4:85–103. http://ojs.c3sl.ufpr.br/ojs2/index.php/hidrogeologia/article/view/2652/2193

  • Berner RA (1970) Sedimentary pyrite formation. Am J Sci 268:1–23

    Article  Google Scholar 

  • Burkert U, Ginzel G, Babenzien HD, Koschel R (2004) The hydrogeology of a catchment area and an artificially divided dystrophic lake—consequences for the limnology of lake Fuchskuhle. Biogeochemistry 71:225–246

    Article  Google Scholar 

  • Chevoratev II (1955) Metamorphism of natural water in the crust of weathering. Geochim Cosmochim Acta 8:22–48

    Article  Google Scholar 

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publisher, New York, p 328 (ISBN: 1566702496)

    Google Scholar 

  • Cook P, Herczeg A (1999) Environmental tracers in subsurface hydrology. Kluwer Academic Press, Boston, p 529

    Google Scholar 

  • Craig H (1961) Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133 (N3467):1833–1834

    Google Scholar 

  • Custodio E (1991) Hydrogeochemical interpretation as a tool in the study and quantification of aquifer systems. In: Hidrogeología estado actual y prospectiva, CIMNE, Barcelona, pp 121–162

  • Dalla Salda L, Iñiguez RM (1979) “La Tinta”, Precambrico y Paleozoico de Buenos Aires (La Tinta, Precambrian and Paleozoic in Buenos Aires). VII Congr Geol Arg I, Neuquén, Argentina, p 539–550

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:438–468

    Google Scholar 

  • Ferreira G, Rodríguez L, Vonnet C, Choque J, Marano P (2009) Avances en el conocimiento del acuífero libre de la cuenca del arroyo Cululú (provincia de Santa Fe). VI Congreso Nacional de Hidrogeología y IV Seminario hispanoamericano de Temas Actuales de la Hidrogeología Subterránea, Santa Rosa, La Pampa, Argentina 24–28 de agosto (ISBN 978-987-1082-36-7)

  • Froehlich KFO, Gonfiantini R, Rozanski K (2005) Isotopes in lake studies: a historical perspective. In: Aggarwal PK, Gat JR Froehlich KFO (eds) Isotopes in the water cycle. Past, present and future of a developing science pp 139–150

  • Garrels RM, Christ CL (1965) Solutions, minerals and equilibria. Harper, New York, p 450

    Google Scholar 

  • Geyh MA (2000) Environmental isotopes in the hydrological cycle: principles and applications/groundwater-saturated and unsaturated zone, vol 4. Technical documents in hydrology 39, UNESCO/IAEA

  • Glynn PD, Plummer LN (2005) Geochemistry and the understanding of groundwater systems. Hydrogeol J 13(1):263–287

    Article  Google Scholar 

  • Gonfiantini R (1978) Standards for stable isotope measurements in natural compounds. Nature 271:534

    Article  Google Scholar 

  • Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:91–109

    Article  Google Scholar 

  • Litaor MI, Eshel G, Sade R, Rimmer A, Shenker M (2008) Hydrogeological characterization of an altered wetland. J Hydrol 349:333–349

    Article  Google Scholar 

  • Marchese H, Di Paola E (1975) Miogeosinclinal Tandil. RevAsoc Geol Arg 30(2):161–179

    Google Scholar 

  • Martínez D, Bocanegra EM, Manzano M (2000) La modelación hidrogeoquímica como herramienta en estudios Hidrogeológicos (Hydrogeochemical modeling as a tool in hydrogeological studies). Boletín geológico y Minero. Vol 111-4. pp 83–98 (ISSN 0368-0176)

  • Massone H (2003) Geología y planificación territorial en la cuenca superior del arroyo grande (provincia de Buenos Aires). Tesis doctoral. Universidad Nacional de La plata, Facultad de Ciencias Naturales y Museo, La Plata

  • Medina A, Carrera J (2005) Transin IV. Fortran code for solving the coupled flow and transport inverse problem. User’s guide E.T.S.I. Caminos Canales y Pueros, Barcelona, p 248

    Google Scholar 

  • Mook WG (2002) Isótopos Ambientales en el Ciclo Hidrológico. Principios y Aplicaciones. Publicaciones del Instituto Geológico y Minero de España Serie: Guias y Manuales N1 2002 IGME, Madrid

    Google Scholar 

  • Morse JW, Millero FJ, Cornwell JC, Rickard D (1987) The chemistry of hydrogen sulfide and iron sulfide systems in natural waters. Earth Sci Rev 24:1–42

    Article  Google Scholar 

  • Parkhurst DL, Appelo C (1999) User’s guide to PHREEQC (version 2) A computer program for speciation, batch reaction, one dimensional transport, and inverse geochemical calculations, USGS Water Resources Investigations Report 99-4259, pp 1–312

  • Plummer L, Vallejos W, Mazza C, Pugliese M (1991) An interactive code (NETPATH) for modelling net geochemical reactions along a flow path. USGS Water Resources Investigations Report 91-4078, pp 1–94

  • Price JS, Maloney DA (1994) Hydrology of a patterned bog–fen complex in southeastern Labrador, Canada. Nordic Hydrol 25:313–330

    Google Scholar 

  • Quirós R, Rosso JJ, Rennella A, Sosnovsky A, Boveri M (2002) Estudio sobre el estado trófico de las lagunas pampeanas (The trophic status of pampean ponds). Interciencia 27:584–591

    Google Scholar 

  • Quiroz Londoño OM (2009) Hidrogeología e Hidrogeoquímica de las Cuencas de los Arroyos Tamangueyú y El Moro Provincia de Buenos Aires (Hydrogeology and hydrogeochemistry in Tamangueyú and El Moro Creek Basins). Tesis doctoral, Universidad Nacional de Río Cuarto, p 292

  • Quiroz Londoño OM, Martínez DE, Dapeña C, Massone H (2008) Hydrogeochemistry and isotope analyses used to determine groundwater recharge and flow in low-gradient catchments of the province of Buenos Aires, Argentina. Hydrogeol J 16(6):1113–1127 (ISSN 14310-2174)

    Article  Google Scholar 

  • Romanelli A, Quiroz Londoño OM, Massone HE, Martínez DE, Bocanegra EM (2010) El agua subterránea en el funcionamiento hidrológico de los humedales del Sudeste Bonaerense, Provincia de Buenos Aires, Argentina (Groundwater in the hydrological functioning of wetlands). Boletín Geológico y Minero 121(4):373–386

    Google Scholar 

  • Ruiz de la Garreta A, Varni M, Banda N R, Barranquero R (2007) Caracterización Geohidrológica Preliminar en la Cuenca del Arroyo Langueyú, partido de Tandil, Buenos Aires. V Congreso Argentino de Hidrogeología, pp 119–128

  • Sala JM (1975) Recursos Hídricos (especial mención de las aguas subterráneas) [Water Resources (special reference to groundwater)]. Relatorio Geología de la Provincia de Buenos Aires, IV Congreso Geológico Argentino, Buenos Aires, September 1975

  • Schicht RJ, Walton WC (1961) Hydrologic budgets for three small watersheds in Illinois. Ill State Water Surv Rep Invest 40:40

    Google Scholar 

  • Thornthwaite CW, Mather JR (1957) The water balance. Drexel Institute of Technology, Centerton, p 104

    Google Scholar 

  • USDA-SCS (1964) Hydrology. Section 4, Part I, Watershed planning. In: National Engineering Handbook, US Department of Agriculture, Soil Conservation Service, Washington

  • Venecio M, Varni M (2003) Estimación de la Recarga y del Almacenamiento Específico a través de Análisis de Registros de Nivel Freático (Recharge estimation and specific yield through water table measurement analysis). III congreso Argentino de Hidrogeología y I seminario Hispano-latinoamericano sobre temas actuales de la hidrología subterránea, Rosario, Argentina, pp 153–160. ISBN 950-673-395-3

  • Wang Y, Guo Q, Su C, Ma T (2006) Strontium isotope characterization and major ion geochemistry of karst water flow, Shentou, northern China. J Hydrol 328:592–603

    Article  Google Scholar 

  • Zhang L, Mitsch W (2005) Modelling hydrological processes in created freshwater wetlands: an integrated system approach. Environ Model Softw 20:935–946

    Article  Google Scholar 

  • Zimmerman E (2004) Análisis de Sistemas Hidrológicos. Desarrollo de contenidos. Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Rosario, República Argentina

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Quiroz Londoño.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bocanegra, E., Quiroz Londoño, O.M., Martínez, D.E. et al. Quantification of the water balance and hydrogeological processes of groundwater–lake interactions in the Pampa Plain, Argentina. Environ Earth Sci 68, 2347–2357 (2013). https://doi.org/10.1007/s12665-012-1916-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-012-1916-4

Keywords

Navigation