Environmental Earth Sciences

, Volume 68, Issue 8, pp 2145–2162 | Cite as

The use of GIS-based 3D geological tools to improve hydrogeological models of sedimentary media in an urban environment

  • V. Velasco
  • R. Gogu
  • E. Vázquez-Suñè
  • A. Garriga
  • E. Ramos
  • J. Riera
  • M. Alcaraz
Original Article


A software platform was developed to facilitate the development of 3D geological models of sedimentary media for hydrogeological modelling, especially for urban environments. It is composed by a geospatial database and a set of tools that enable the user to perform an accurate stratigraphic analysis. The geospatial database is used for the management of a large amount of different data types coming from different sources (geophysical logs, borehole logs, hydraulic tests, etc.). Its structure allows us to store accurate and very detailed geological borehole-log description that can be straightforwardly generalized and further upscaled. The set of stratigraphic analysis instruments, working within a Geographical Information System (GIS) environment, has been set up to facilitate the geological data interpretation. Detailed stratigraphic columns of the selected boreholes can be generated using customized queries. Creating automatically a geological profile is further possible by displaying the boreholes lithological columns and the geophysical and geotechnical field-tests’ results together with the defined stratigraphic units. Based on an interactive analysis environment is created, where the user is able to analyze and to define the possible existing correlation surfaces, units, and faults. The obtained information represented by the geological units/subunits can be then converted within a 3D environment. The resulted 3D features could be used within the same GIS environment or by external software packages for further stochastic analysis or to build up 3D geological and hydrogeological models. Starting from an accurate and very detailed geological description, the software allows us to represent in three dimensions (3D) the heterogeneity of the sedimentary media and their spatial distribution. Thus, it shows how connectivity implemented into hydrogeological models among the different sedimentary bodies plays an important role. Results are shown consisting in a case study located in the Besòs River Delta, in the metropolitan area of Barcelona, on the Mediterranean coast in NE Spain.


Geospatial database GIS Stratigraphic analysis 3D geological model Hydrogeological model 



This work was supported by the Spanish Ministry of Science and Innovation (HEROS project: CGL2007-66748 and MEPONE project: BIA2010-20244 and MODELGEO CGL2010-15294); the Spanish Ministry of Industry (GEO-3D Project: PROFIT 2007-2009; and the Generalitat de Catalunya (Grup Consolidat de Recerca: Grup d’Hidrologia Subterrània, 2009-SGR-1057).


  1. 3DGeomodeller (2008) Intrepid Geophysics & BRGM. Available at: http://www.geomodeller.com/geo/index.php. Accessed 18 May 2012
  2. Barazzuoli P, Bouzelboudjen M, Cucini S, Kiraly L, Menicori P, Salleolini M (1999) Holocenic alluvial aquifer of the River Cornia coastal plain (southern Tuscany, Italy): database design for groundwater management. Environ Geol 39(2):123–143CrossRefGoogle Scholar
  3. Bonomi T (2009) Database development and 3D modeling of textural variations in heterogeneous, unconsolidated aquifer media: application to the Milan plain. Comput Geosci 35:134–145CrossRefGoogle Scholar
  4. Borgomano JRF, Fournier F, Viseur S, Rijkels L (2008) Stratigraphic well correlations for 3-D static modeling of carbonate reservoirs. AAPG Bulletin 92:789–824CrossRefGoogle Scholar
  5. Brodie RS (1999) Integrating GIS and RDBMS technologies during construction of a regional groundwater model. Environ Model Softw 14:119–128CrossRefGoogle Scholar
  6. Carneiro J, Carvalho JM (2010) Groundwater modeling as an urban planning tool: issues raised by a small-scale model. Q J Eng Geol Hydrogeol 43:157–170CrossRefGoogle Scholar
  7. Carrera-Hernández JJ, Gaskin SJ (2008) The Basin of Mexico Hydrogeological Database (BMHDB): implementation, queries and interaction with open source software. Environ Model Softw 23:1271–1279CrossRefGoogle Scholar
  8. Chaaban F, Darwishe H, Louche B, Battiau-queney Y, Masson E, El Khattabi J, Carlier E (2012) Geographical information system approach for environmental management in coastal area (Hardelot-Plage, France). Environ Earth Sci 65:185–193CrossRefGoogle Scholar
  9. Chang YS, Park D (2004) Development of a web based Geographic Information System for the management of borehole and geological data. Comput Geosci 30:887–897CrossRefGoogle Scholar
  10. Chesnaux R, Lambert M, Walter J, Fillastre U, Hay M, Rouleau A, Daigneault R, Moisan A, Germaneau D (2011) Building a geodatabase for mapping hydrogeological features and 3D modeling of groundwater systems: application to the Sauguenay-Lac-St.-Jean region, Canada. Comput Geosci 37:1870–1882Google Scholar
  11. Comunian A, Renard P (2009) Introducing wwhypda: a world-wide collaborative hydrogeological parameters database. Hydrogeol J 17:481–489bCrossRefGoogle Scholar
  12. Cox SJD (2004) XMML Online DataTransfer for the Exploration and Mining Industry. Report M340. Minerals and Energy Research Institute of Western Australia, Department of Industry & Resources, Perth, p 311Google Scholar
  13. Culshaw MG, Price SJ (2011) The 2010 Hans Cloos lecture. The contribution of urban geology to the development, regeneration and conservation of cities. Bull Eng Environ 70:333–376CrossRefGoogle Scholar
  14. Custodio E, Llamas MR (1983) Hidrología Subterránea. Ediciones Omega, BarcelonaGoogle Scholar
  15. de Dreuzy JR, Bodin J, Le Grand H, Davy P, Boulanger D, Battais A, Bour B, Gouze P, Porel G (2006) General database for ground water site information. Ground Water 44(5):743–748Google Scholar
  16. Deutch C, Journal A (1998) GSLIB Geostatistical software library and user’s guide, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  17. Earthvision (2012) Dynamic Graphics, Inc. Available at: http://www.dgi.com/earthvision/evmain.html. Accessed 18 May 2012
  18. EQuIS (2012) Earthsoft Inc. Available at: www.earthsoft.com. Accessed 18 May 2012
  19. Escorcia J (2010) Modelación de los trabajos de tunelaje: una nueva herramienta para la toma de decisiones en tiempo real. Master Thesis. Universitat Politecnica de Catalunya, BarcelonaGoogle Scholar
  20. EVS and MVS (2012) CTech Development Corporation. Available at: http://www.ctech.com/. Accessed 18 May 2012
  21. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall Inc, New JerseyGoogle Scholar
  22. Gàmez D, Simó JA, Lobo FJ, Barnolas A, Carrera J, Vázquez-Suñé E (2009) Onshore-Offsore correlation of the Llobregat deltaic system, Spain: development of deltaic geometries under different relative sea-level and growth fault influences. Sed Geol 217(2009):65–84CrossRefGoogle Scholar
  23. GID (2012) CIMNE International centre for numerical methods in engineering (Barcelona, Spain). Available at: http://gid.cimne.upc.es. Accessed 22 May 2012
  24. Gintsoftware (2011) Bentley Systems, Incorporated. Available at: http://www.gintsoftware.com/. Accessed 21 May 2012
  25. Gocad (2011) gOcad research group ASGA. Available at: http://www.gocad.org. Accessed 18 May 2012
  26. Gogu RC, Carabin G, Hallet V, Peters V, Dassargues A (2001) GIS based hydrogeological databases and groundwater modelling. Hydrogeol J 9(6):555–569CrossRefGoogle Scholar
  27. Gogu RC, Velasco V, Vázquez-Suñè E, Gaitanaru D, Chitu Z, Bica I (2011) Sedimentary media analysis platform for groundwater modelling in urban areas. Adv Res Aquatic Environ 5:489–496CrossRefGoogle Scholar
  28. Hydrogeoanlyst (2011) Schlumberger Water Services. Available at: http://www.swstechnology.com/groundwater-software/groundwater-data-visualization/hydro-geoanalyst. Accessed 1 June 2012
  29. Illinois State Geological Survey (2012) Available at: http://www.isgs.illinois.edu/maps-data-pub/coal-maps/strat-database/reprint1993c.pdf. Accessed 1 June 2012
  30. International Commission on Stratigraphy (ICS) (2012) Available at: http://www.stratigraphy.org/. Accessed 1 June 2012
  31. Kaufmann O, Martin T (2008) 3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines. Comput Geosci 34:278–290CrossRefGoogle Scholar
  32. Kessler H, Mathers S, Sobish HG (2009) The capture and dissemination of integrated 3D geospatial knowledge at the British Geological Survey using GSI3D software and methodology. Comput Geosci 35:1311–1321CrossRefGoogle Scholar
  33. Lake R (2005) The application of geography markup language (GML) to the geological sciences. Comput Geosci 31:1081–1094CrossRefGoogle Scholar
  34. Leapfrog3D (2012) ARANZ Geo Limited. Available at: http://www.leapfrog3d.com/. Accessed 18 May 2012
  35. Maidment DR (2002) Arc Hydro: GIS for water resources. ESRI Press, Redlands, p 222Google Scholar
  36. McCarthy JD, Graniero PA (2006) A GIS-based borehole management and 3D visualization system. Comput Geosci 32:1699–1708CrossRefGoogle Scholar
  37. Medina A, Carrera J (2003) Geostatistic inversion of coupled problems: dealing with computational burden and different types of data. J Hydrol 281:251–264CrossRefGoogle Scholar
  38. Ming J, Pan M, Qu H, Ge Z (2010) GSIS: a 3D geological multy-body modeling system from netty cross-sections with topology. Comput Geosci 36:756–767CrossRefGoogle Scholar
  39. Pokrajac D (1999) Interrelation of wastewater and groundwater management in the city of Bijeljina in Bosnia. Urban Water 1:243–255CrossRefGoogle Scholar
  40. Pujades E, Carrera J, Vázquez-Suñé E, Jurado A, Vilarrasa V, Mascuñano-Salvador E (2011) Hydraulic characterization of diaphragm walls for cut and cover tunnelling. Eng Geol. doi: 10.1016/j.enggeo.2011.10.012 Google Scholar
  41. Remy N, Boucher A, Wu J (2009) Applied geostatistic with SGems. Cambridge University Press, New YorkCrossRefGoogle Scholar
  42. Rienzo F, Oreste P, Pelizza (2008) Subsurface geological-geotechnical modeling to sustain underground civil planning. Eng Geol 96:187–204CrossRefGoogle Scholar
  43. Riera J (2011). L’estudi del comportament hidrogeològic de l’aquifer del Besòs en les rodalies del campus ciutadella de la Universitat Pompeu Fabra mitjançant un model numèric del flux.Master Thesis. Universitat Politecnica de Catalunya, BarcelonaGoogle Scholar
  44. Robins NS, Rutter HK, Dumplenton S, Peach DW (2005) The role of 3D visualization as an analytical tool preparatory to numerical modeling. J Hydrogeol 301:287–295Google Scholar
  45. RockWare GIS link 2(2012) Rockware, Inc. Available at: www.rockware.com. Accessed 31 May 2012
  46. Rockworks (2012) Rockware, Inc. Available at: www.rockware.com. Accessed 18 May 2012
  47. Ross M, Parent M, Lefebvre R (2005) 3D geologic framework models for regional hydrogeology and land-use management: a case study from a Quaternary basin of southwestern Quebec, Canada. Hydrogeol J 13:690–707CrossRefGoogle Scholar
  48. Sen M, Duffy T (2005) GeoSciML: development of a generic GeoScience Markup Language. Comput Geosci 31:1095–1103CrossRefGoogle Scholar
  49. Strassberg G (2005) A geographic data model for groundwater systems. Dissertation, University of Texas, Austin, p 229Google Scholar
  50. Target for ArcGIS 3.5 (2011) Geosoft Inc. Available at: http://www.geosoft.com/. Accessed 22 May 2012
  51. The Australian National Groundwater Data Transfer Standard (1999) National groundwater committee working group on national groundwater data standards. Canberra, AustraliaGoogle Scholar
  52. Tubau I, Vázquez-Suñé E, Carrera J, Gonzalez S, Petrovic M, Lopez de Alda M, Barceló D (2010) Occurrence and fate of alkylphenol polyethoxylate degradation products and linear alkylbenzene sulfonate surfactants in urban ground water: Barcelona case study. J Hydrol 383:102–110CrossRefGoogle Scholar
  53. UPC (2003) Codigo Visual Transin 1.1 R65. Developed in the Department of Geotechnical Engineering and Geosciences (ETCG), Universitat Politecnica de Catalunya (UPC), BarcelonaGoogle Scholar
  54. Vázquez-Suñé E, Sánchez-Vila X, Carrera J (2005) Introductory review of specific factors influencing urban groundwater, an emerging branch of hydrogeology, with reference to Barcelona, Spain. Hydrogeol J 13:522–533CrossRefGoogle Scholar
  55. Vázquez-Suñé E, Abarca E, Carrera J, Capino B, Pool M, Gámez D, Simó T, Batlle F, Niñerola JM, Ibáñez X (2006) Groundwater modelling as a tool for the European Water Framework Directive (WFD) application: the Llobregat case. Phys Chem Earth 31:1015–1029CrossRefGoogle Scholar
  56. Velasco V, Cabello P, Vázquez-Suñè E, López-Blanco M, Ramos E, Tubau I (2012) A stratigraphic sequence based geological model for constraining hydrogeological modeling in the urbanized area of the Quaternary Besòs Delta (NW Mediterranean Coast, Spain). Geologica Acta. doi: 10.101344/105.000001757 Google Scholar
  57. Vogt J (2002) Guidance Document on Implementing the GIS Elements of the Water Framework Directive. Technical report, Commission of the European CommunitiesGoogle Scholar
  58. Vulcan (2012) Maptek Pty Ltd. Available at: http://www.maptek.com/products/vulcan/. Accessed 18 May 2012
  59. Whiteaker TL, Jones N, Strassberg G, Lemon A, Gallup D (2012) GIS-based data model and tools for creating and managing two-dimensional cross-sections. Comput Geosci 39:42–49CrossRefGoogle Scholar
  60. Wojda P, Brouyère S, Derouane J, Dassargues A (2010) Hydrocube: an entity-relationship hydrogeological data model. Hydrogeol J 18:1953–1962CrossRefGoogle Scholar
  61. Wu Q, Xu H, Zhou W (2008) Development of a 3D GIS and its application to karst areas. Environ Geol 54:1037–1045CrossRefGoogle Scholar
  62. Wycisk P, Gossel W, Neumann Ch (2009) High-resolution 3D spatial modelling of complex geological structures for an environmental risk assessment of abundant mining and industrial megacities. Comput Geosci 35:165–182CrossRefGoogle Scholar
  63. XMML (2006) XMML web site: Solid Earth and Environment GRID, CSIRO. Available at: https://www.seegrid.csiro.au/wiki/Xmml/WebHome. Accessed 19 May 2012

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • V. Velasco
    • 1
    • 2
  • R. Gogu
    • 3
    • 4
  • E. Vázquez-Suñè
    • 2
  • A. Garriga
    • 1
    • 2
  • E. Ramos
    • 5
  • J. Riera
    • 1
    • 2
  • M. Alcaraz
    • 1
    • 2
  1. 1.GHS, Departament of Geotechnical Engineering and GeosciencesUniversitat Politecnica de Catalunya, UPC-BarcelonaTechBarcelonaSpain
  2. 2.GHS, Institute of Environmental Assessment and Water Research (IDAEA), CSICBarcelonaSpain
  3. 3.Technical University of Civil EngineeringBucharestRomania
  4. 4.Romanian Academy Research Center of Artificial IntelligenceBucharestRomania
  5. 5.Geomodels Institute, Group of Geodynamics and Basin Analysis, Departament d′Estratigrafia, Paleontologia i Geosciències marinesFacultat de Geologia, Universitat de Barcelona (UB)BarcelonaSpain

Personalised recommendations