Environmental Earth Sciences

, Volume 68, Issue 3, pp 833–845 | Cite as

Analysis of the surface of different marbles by X-ray photoelectron spectroscopy (XPS) to evaluate decay by SO2 attack

  • A. Luque
  • M. V. Martínez de Yuso
  • G. Cultrone
  • E. Sebastián
Original Article

Abstract

Atmospheric pollution is one of the main agents of decay in monuments and other works of art located in industrialised urban centres. SO2 is a permanent and abundant component of air pollution and, although it does not have an immediate visual effect, after continuous exposure, it can cause irreversible damage to building materials. Marble is one of the most commonly used ornamental stones in historical monuments and its mineralogical composition makes it very susceptible to damage caused by exposure to SO2. To measure the chemical reactions caused on marble by the action of atmosphere rich in SO2, selected calcitic and dolomitic samples were altered by weathering accelerated test. For this, seven marble types (four calcitic and three dolomitic) were exposed to high concentration of sulphur dioxide for 24 h in a climate chamber under controlled temperature and humidity conditions (20 °C and > 90 % HR). Changes on marble surfaces caused by reactions of SO2 with calcite and dolomite were studied using two non-destructive techniques: chromatic change by means of colorimetry and chemical analysis using X-ray photoelectron spectroscopy (XPS). The development of new mineral phases was also observed by scanning electron microscopy. Colorimetric analysis revealed a decrease in lightness and chromatic parameters suggesting that these changes were due to the development of new mineral phases in all marbles. The XPS technique, which is generally used in the analysis of metals, is relatively new in the field of stone deterioration. It enabled us to recognise the development of sulphites and sulphates on marble surfaces with high precision, after just 24 h of exposure to high SO2 concentrations and to distinguish different decay paths for calcitic and dolomitic marbles.

Keywords

Marble decay XPS Calcium sulphite and sulphate Magnesium sulphite and sulphate 

References

  1. Amoroso GG, Fassina V (1983) Stone decay and conservation. Elsevier, AmsterdamGoogle Scholar
  2. Antill SJ, Viles HA (1999) Aspects of stone weathering, decay and conservation. Imperial College Press, London, pp 28–42Google Scholar
  3. Baltrusaitis J, Usher CR, Grassian VH (2007) Reactions of sulfur dioxide on calcium carbonate single crystal and particle surfaces at the adsorbed water carbonate interface. Phys Chem Chem Phys 9:3011–3024CrossRefGoogle Scholar
  4. Billmeyer FW, Salzmanm M (1981) Principles of color technology, 2nd edn. Wiley, New YorkGoogle Scholar
  5. Böke H, Göktürk H, Caner-Saltık E, Demirci S (1999) Effect of airborne particle on SO2–calcite reaction. Appl Surf Sci 140:70–82CrossRefGoogle Scholar
  6. Böke H, Hale-Göktürk EH, Caner-Saltık E (2002) Effect of some surfactants on SO2–marble reaction. Mater Lett 57:935–939CrossRefGoogle Scholar
  7. Briggs D, Seah MP (1983) Practical surface analysis by Auger and X-ray photoelectron spectroscopy. In: Briggs D, Seah MP (eds) Wiley, ChichesterGoogle Scholar
  8. Briggs D, Grant JT (2003) Surface analysis and X-ray photoelectron spectroscopy. IM Publications, ChichesterGoogle Scholar
  9. Brimblecombe P (2004) Air pollution and cultural heritage. In: Saiz-Jimenez C (ed) London, pp 87–90Google Scholar
  10. Camuffo D (1995) Physical weathering of stones. Sci Total Environ 167(1–3):1–14CrossRefGoogle Scholar
  11. Christie AB, Sutherland I, Walls JM (1981) An XPS study of ion-induced dissociation on metal carbonate surfaces. Vaccum 31:513–517CrossRefGoogle Scholar
  12. Christie AB, Lee J, Sutherland I, Walls JM (1983) An XPS study of ion-induced compositional changes with group II and group IV compounds. Appl Surf Sci 15:224–237CrossRefGoogle Scholar
  13. Coyle GJ, Tsang T, Adler I, Ben-Zvi N (1981) XPS studies of ion-bombardment damage of transition metal sulfates. J Electron Spectrosc Relat Phenom 24:221–236CrossRefGoogle Scholar
  14. Craig NL, Harker AB, Novakov T (1974) Determination of the chemical states of sulfur in ambient pollution aerosols by X-ray photoelectron spectroscopy. Atmos Environ 8:15–21CrossRefGoogle Scholar
  15. Cultrone G, Arizzi A, Sebastián E, Rodríguez-Navarro C (2008) Sulfation of calcitic and dolomitic lime mortars in the presence of diesel particulate matter. Environ Geol 56:741–752CrossRefGoogle Scholar
  16. Elfving P, Panas I, Lindqvist O (1994) Model study of the first steps in deterioration of calcareous stone. Initial surface sulphite formation on calcite. Appl Surf Sci 74:91–98CrossRefGoogle Scholar
  17. Fassina V (1991) Atmospheric pollutants responsible for stone decay. Wet and dry surface deposition of air pollutants on stone and the formation of black scabs. In: Zezza F (ed) Weathering and air pollution. Community of Mediterranean Universities, Bari, pp 67–86Google Scholar
  18. Fassina V, Favaro M, Naccari A (2002) Principal decay patterns on venetian monuments. In: Siegesmund S, Weiss TS, Vollbrecht A (eds) Natural stones, weathering phenomena, conservation strategies and case studies, special publications 205. Geological Society, London, pp 381–391Google Scholar
  19. Feddema JJ, Meierding TC (1987) Marble weathering and air pollution in Philadelphia. Atmos Environ 21(1):143–157CrossRefGoogle Scholar
  20. Gauri KL, Doderer GC, Lipscomb NT, Sarma AC (1973) Reactivity of treated and untreated marble specimens in an SO2 atmosphere. Stud Conserv 18:25–35CrossRefGoogle Scholar
  21. Gauri KL, Tambe SS, Caner-Saltık EN (1992) Weathering of dolomite in industrial environments. Environ Geol Water Sci 19:55–63CrossRefGoogle Scholar
  22. Ghobadi MH, Momeni AA (2011) Assessment of granitic degradability susceptive to acid solutions in urban area. Environ Earth Sci 64:753–760CrossRefGoogle Scholar
  23. González-Elipe AR, Fernández A, Caballero A, Holgado JP, Munuera G (1993) Mixing effects in CeO2/TiO2 and CeO2/SiO2 systems submitted to Ar+ sputtering. J Vac Sci Technol A 11:58–65CrossRefGoogle Scholar
  24. Hagisawa H (1933) Studies of magnesium sulphite. Bull Inst Phys Chem Res 12:976–983Google Scholar
  25. Kellogg WW, Cadle RD, Allen ER, Lazrus AL, Martell EA (1972) The sulfur cycle. Science 175(22):587–596CrossRefGoogle Scholar
  26. Kelly R (1989) Bombardment-induced compositional change with alloys, oxides, oxysalts and halides III. The role of chemical driving forces. Mater Sci Eng 115:11–24CrossRefGoogle Scholar
  27. Kontozova-Deutsch V, Cardell C, Urosevic M, Ruiz-Agudo E, Deutsch F, Van Grieken R (2011) Characterization of indoor and outdoor atmospheric pollutants impacting architectural monuments: the case of San Jerónimo Monastery (Granada, Spain). Environ Earth Sci 63:1433–1445CrossRefGoogle Scholar
  28. Kulshreshtha NP, Punuru AR, Gauri KL (1989) Kinetics of the reaction of SO2 with marble. J Mater Civil Eng 1:60–72CrossRefGoogle Scholar
  29. Lan TTN, Nishimura R, Tsujino Y, Satoh Y, Thoa NTP, Yokoi M, Maeda Y (2005) The effects of air pollution and climatic factors on atmospheric corrosion of marble under field exposure. Corros Sci 47:1023–1038CrossRefGoogle Scholar
  30. Lefévre RA, Ausset P (2002) Atmospheric pollution and building materials: stone and glass. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stone, weathering phenomena, conservation strategies and case studies. Special Publications, vol 205. Geological Society, London, pp 329–345Google Scholar
  31. Lindberg BJ, Hamrin K, Johansson G, Gelius U, Fahlman A, Nordling C, Siegbahn K (1970) Molecular spectroscopy by means of ESCA II. Sulfur compounds. Correlation of electron binding energy with structure. Physica Scryta 1:286–287CrossRefGoogle Scholar
  32. Liu Y, Bisson TM, Yang H, Xu Z (2010) Recent developments in novel sorbents for flue gas clean up. Fuel Process Technol 91:1175–1197CrossRefGoogle Scholar
  33. López-Arce P, Doehne E, Martin W, Pinchin S (2008) Sales de sulfato magnésico y materiales de edificios históricos: simulación experimental de laminaciones en calizas mediante ciclos de humedad relativa y cristalización de sales. Materiales de Construcción 58(289–290):125–142Google Scholar
  34. López-Arce P, García-Guinea J, Benavente D, Tormo L, Doehne E (2009) Deterioration of dolostone by magnesium sulphate salt: an example of incompatible building materials at Bonaval Monastery. Constr Build Mater 23(2):846–855CrossRefGoogle Scholar
  35. Luque A, Cultrone C, Sebastián E, Cazalla O (2008) Evaluación de la eficacia de tratamientos en el incremento de la durabilidad de una calcarenita bioclástica (Granada, España), vol 58(292), pp 115–128Google Scholar
  36. Luque A, Sebastián EM, Cultrone G, Ruiz-Agudo E (2008) Análisis mediante XPS para la determinación de yeso neoformado por contaminación mediante SO2. In: Proceedings of 9th international congress on heritage and building conservation, Seville, pp 75–80Google Scholar
  37. Luque A, Leiss B, Álvarez-Lloret P, Cultrone G, Siegesmund S, Sebastián E, Cardell C (2011) Potential thermal expansion of calcitic and dolomitic marbles from Andalusia (Spain). J Appl Crystallogr 44:1227–1237CrossRefGoogle Scholar
  38. Malaga-Starzec K, Panas I, Lindqvist O (2004) Model study of initial adsorption of SO2 on calcite and dolomite. Appl Surf Sci 222:82–88CrossRefGoogle Scholar
  39. Martín JD (2004) A software package for powder X-ray diffraction analysis. Lgl. Dep. GR 1001/04Google Scholar
  40. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-Ray photoelectron spectroscopy. In: Chastain J (ed) Perkin-Elmer Corporation, Minneapolis, pp 72Google Scholar
  41. Nývlt J (2001) Solubilities of magnesium sulphite. J Therm Anal Calorim 66:509–512CrossRefGoogle Scholar
  42. Olaru M, Aflori M, Simionescu B, Doroftei F, Stratulat L (2010) Effect of SO2 dry deposition on porous dolomitic limestones. Materials 3(1):216–231CrossRefGoogle Scholar
  43. Pinaev VA (1964) Mutual solubility of magnesium sulphite, bisulfite and sulfate. Zhirnal Prikladnoi Khimii 37:1361–1362Google Scholar
  44. Przepiórski J, Czyzewski A, Kapica J, Moszynski J, Grzmil B, Tryba B, Mozia S, Morawski AW (2012) Low temperature removal of SO2 traces from air by MgO-loaded porous carbons. Chem Eng J 191:147–153CrossRefGoogle Scholar
  45. Rodríguez-Navarro C, Sebastián E (1996) Role of particulate matter from vehicle exhaust on porous building stones (limestone) sulfation. Sci Total Environ 187:79–91CrossRefGoogle Scholar
  46. Rowland CH, Abdulsattar AH (1978) Equilibriums for magnesia wet scrubbing of gases containing sulfur dioxide. Environ Sci Technol 12:1158–1162CrossRefGoogle Scholar
  47. Saiz-Jimenez C, Brimblecombe P, Camuffo D, Lefevre RA, Van Grieken R (2004) Damages caused to European monuments by air pollution: assessment and preventive measures. In: Saiz-Jimenez (ed) Air Pollution and cultural heritage. London, pp 91–109Google Scholar
  48. Santamarina M, Di Cuarto F, Zanna S, Marcus P (2007) Initial surface film on photocurrent spectroscopy (PCS). Electrochim Acta 53:1314–1324CrossRefGoogle Scholar
  49. Schögg K, Steind M, Friedl A, Weber HK, Sixta H (2006) Calculation of physical property data of the system MgO–SO2–H2O and their implementation in Aspen Plus®. Lenzinger Berichte 86:56–62Google Scholar
  50. Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New YorkGoogle Scholar
  51. Söhnel O, Rieger A (1994) Solubilities of magnesium sulfite hydrates. J Chem Eng Data 39:161–162CrossRefGoogle Scholar
  52. Tambe S, Gauri KL, Li S, Cobourn WG (1991) Kinetic study of the SO2 reaction with dolomite. Environ Sci Technol 25:2071–2075CrossRefGoogle Scholar
  53. Tommervik H, Johansen BE, Pedersen JP (1995) Monitoring vegetation changes in Pasvik (Norway) and Pechenga in Kola Peninsula (Russia) using multitemporal Landsat MSS/TM data. Sci Total Environ 160(161):753–767CrossRefGoogle Scholar
  54. Török A (2002) Oolitic limestone in polluted atmospheric environment in Budapest weathering phenomena and alterations in physical properties. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stone, weathering phenomena, conservation strategies and case studies. Special Publications, vol 205. Geological Society, London, pp 363–379Google Scholar
  55. Török A (2008) Black crusts on travertine: factors controlling development and stability. Environ Geol 56:583–594CrossRefGoogle Scholar
  56. Török A, Licha T, Simon K, Siegesmund S (2011) Urban and rural limestone weathering: the contribution of dust to black crust formation. Environ Earth Sci 63:675–693CrossRefGoogle Scholar
  57. Torrisi A (2008) XPS study of five fluorinated compounds deposited on calcarenite stone: Part I. Unaged samples. Appl Surf Sci 254:2650–2658CrossRefGoogle Scholar
  58. Viles HA (1990) The early stages of building stone decay in an urban environment. Atmos Environ 24A:229–232Google Scholar
  59. Winkler EM (1966) Important agents of weathering for building and monumental stone. Eng Geol 1:381–400CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • A. Luque
    • 1
  • M. V. Martínez de Yuso
    • 2
  • G. Cultrone
    • 1
  • E. Sebastián
    • 1
  1. 1.Department of Mineralogy and Petrology, Faculty of SciencesUniversity of GranadaGranadaSpain
  2. 2.Central Research ServicesUniversity of MalagaMalagaSpain

Personalised recommendations