Skip to main content
Log in

Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas reservoir. Part I: from experimental data to a reference geochemical model

  • Special Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Modelling fluid–rock interactions induced by CO2 is a key issue when evaluating the technical feasibility and long-term safety assessment of CO2 storage projects in deep formations. The German R&D programme CLEAN (CO2 Large-Scale Enhanced Gas Recovery in the Altmark Natural Gas Field) investigated the almost depleted onshore gas reservoir located in the Rotliegend sandstone at over 3,000-m depth. The high salinity of the formation fluids and the elevated temperature in the reservoir exceed the validity limits of commonly available thermodynamic databases needed for predictive geochemical modelling. In particular, it is shown that the activity model of Pitzer has to be applied, even if necessary input data for this model are incomplete or inconsistent for complex systems and for the considered temperatures. Simulations based on Debye-Hückel activity model lead to severe, systematic discrepancies already in the simple proposed reference case where experimental data could be used for comparison. A simplified geochemical model, consistent with the average measured composition of formation fluids and the prevailing mineralogical assemblage of the host rock, identifies the mineral phases most likely to be considered at equilibrium with the formation fluid. The simulated reactions due to CO2 injection, under the hypothesis of local thermodynamical equilibrium, result in a moderate reactivity of the system, with the dissolution of anhydrite cementation and haematite being the most relevant expected mineral reactions. This is compensated, at equilibrium, by the precipitation of new carbonates, like calcite and siderite, for an overall very small loss of porous space. The simulated rather small effect of mineral alteration is also due to the scarce amount of water available for reactions in the reservoir. The results of the model are qualitatively in line with observations from batch experiments and from natural analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The ionic strength constitutes a measure of non-ideality of a concentrated solution, and is defined as: \(I=\frac{1}{2} \sum_i z_i^2 C_i ; C\) is the concentration in moles per kg water and z the specific charge of the i-th solute species.

References

  • Accornero M, Marini L (2009) Empirical prediction of the Pitzer’s interaction parameters for cationic Al species with both SiO2(aq) and CO2(aq): implications for the geochemical modelling of very saline solutions. Applied Geochemistry 24(5):747−759

    Article  Google Scholar 

  • Audigane P, Lions J, Gaus I, Robelin C, Durst P, Van der Meer B, Geel K, Oldenburg C, Xu T (2009) Geochemical modeling of CO2 injection into a methane gas reservoir at the K12-B field, North Sea. In: Grobe M, Pashin JC, Dodge RL (eds) Carbon dioxide sequestration in geological media? State of the science. AAPG Studies in Geology 59. American Association of Petroleum, USA, pp 499–519

    Google Scholar 

  • Benbow S, Metcalfe R, Wilson J (2008) Pitzer databases for use in thermodynamic modelling. Quintessa Technical Memorandum (unpublished)

  • Beyer C, Li D, De Lucia M, Kühn M, Bauer S (2012) Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas reservoir. Part II: coupled reactive transport simulations. Environ Earth Sci. doi:10.1007/s12665-012-1684-1

    Google Scholar 

  • Christov C, Dickson AG, Møller N (2007) Thermodynamic modeling of aqueous aluminum chemistry and solid-liquid equilibria to high solution concentration and temperature. I. the acidic H–Al–Na–K–Cl–H2O system from 0 to 100° C. J Solut Chem 36(11):1495–1523

    Article  Google Scholar 

  • Davies C (1962) Ion association. Butterworth, Washington DC

    Google Scholar 

  • Dethlefsen F, Haase C, Ebert M, Dahmke A (2011) Uncertainties of geochemical modeling during CO2 sequestration applying batch equilibrium calculations. Environ Earth Sci 65(4):1105–1117

    Article  Google Scholar 

  • Dick J (2008) Calculation of the relative metastabilities of proteins using the CHNOSZ software package. Geochem Trans 9:10. doi:10.1186/1467-4866-9-10

    Article  Google Scholar 

  • Duan Z, Sun R (2003) An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem Geol 193(3–4):257–271

    Article  Google Scholar 

  • Duan Z, Sun R, Zhu C, Chou I (2006) An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl, and SO 2−4 . Mar Chem 98(2–4):131–139

    Article  Google Scholar 

  • Duan Z, Møller N, Weare JH (1992) An equation of state for the Ch4-CO2-H2O system: I. pure systems from 0 to 1000 °C and 0 to 8000 bar. Geochim Cosmochim Acta 56:2605–2617

    Article  Google Scholar 

  • Gailhanou H, van Miltenburg J, Rogez J, Olives J, Amouric M, Gaucher E, Blanc P (2007) Thermodynamic properties of anhydrous smectite mx-80, illite imt-2 and mixed-layer illite smectite iscz-1 as determined by calorimetric methods. part I: Heat capacities, heat contents and entropies. Geochim Cosmochim Acta 71(22):5463–5473

    Article  Google Scholar 

  • Gaupp R (1996) Diagenesis types and their application in diagenesis mapping. Rev Mineral Geochem 11–12:1183–1199

    Google Scholar 

  • Gaus I (2010) Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks (review article). Int J Greenh Gas Control 4(1):73–89

    Article  Google Scholar 

  • Gaus I, Azaroual M, Czernichowski-Lauriol I (2005) Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea). Chem Geol 217(3–4):319–337

    Article  Google Scholar 

  • Gottschalk M (2007) Equations of state for complex fluids. Rev Mineral Geochem 65:49–97

    Article  Google Scholar 

  • Harvie C, Møller N, Weare J (1984) The prediction of mineral solubilities in natural waters: the Na–K–Mg–Ca–H–Cl–SO4–OH–HCO3–CO3–CO2–H2O system to high ionic strengths at 25 °C. Geochim Cosmochim Acta 48(4):723–751

    Article  Google Scholar 

  • Johnson JW, Oelkers E, Helgeson H (1992) SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 °C. Comp Geosci 19:899–947

    Article  Google Scholar 

  • Kühn M, Förster A, Großmann J, Meyer R, Reinicke K, Schäfer D, Wendel H (2011) CLEAN: Preparing for a CO2-based enhanced gas recovery in a depleted gas field in Germany. Energy Procedia 4:5520–5526

    Article  Google Scholar 

  • Kühn M, Tesmer M, Pilz P, Meyer R, Reinicke K, Förster A, Kolditz O, Schäfer D, Partners C (2012): CLEAN: CO2 large-scale enhanced gas recovery in the Altmark natural gas field (Germany): project overview. Environ Earth Sci. doi:10.1007/s12665-012-1714-z

  • Lüders V, Plessen B, Romer R, Weise S, Banks D, Hoth P, Dulski P, Schettler G (2010) Chemistry and isotopic composition of Rotliegend and Upper Carboniferous formation waters from the North German Basin. Chem Geol 276:198–208

    Article  Google Scholar 

  • Marini L (2007) Geological sequestration of carbon dioxide: thermodynamics, kinetics and reaction path modelling. Elsevier, Oxford

    Google Scholar 

  • Merkel B, Planer-Friedrich B, Nordstrom D (2005) Groundwater geochemistry. Springer, Berlin

    Google Scholar 

  • Moog H, Mönig H (2010) Erstellung von Parameterdateien für die Verwendung mit Chemapp und Phreeqc (BGR project 45-4500046190). Technical Report GRS, Braunschweig, Germany

  • Parkhurst D, Appelo C (1999) Users guide to Phreeqc (version 2). Technical Report, U.S. Geological Survey

  • Peterson S, Hack K (2007) The thermochemistry library Chemapp and its applications. Int J Mater Res 98:268–277

    Google Scholar 

  • Pitzer K (1973) Thermodynamics of electrolytes. I. theoretical basis and general equations. J Phys Chem B 77(2):268–277

    Article  Google Scholar 

  • Pudlo D, Reitenbach V, Albrecht D, Ganzer L, Gernert U, Wienand J, Kohlhepp B, Gaupp R (2012) The impact of diagenetic fluid–rock reactions on Rotliegend sandstone composition and petrophysical properties (Altmark area, Central Germany). Environ Earth Sci. doi:10.1007/s12665-012-1723-y

  • Regnault O, Lagneau V, Schneider H (2009) Experimental measurement of portlandite carbonation kinetics with supercritical CO2. Chem Geol 265:113–121

    Article  Google Scholar 

  • Rempel K, Liebscher A, Heinrich W, Schettler G (2011) An experimental investigation of trace element dissolution in carbon dioxide: Applications to the geological storage of CO2. Chem Geol 289(3–4):224–234

    Article  Google Scholar 

  • Rumpf B, Nicolaisen H, Ocal C, Maurer G (1994) Solubility of carbon dioxide in aqueous solutions of sodium chloride: experimental results and correlation. J Sol Chem 23:431–448

    Article  Google Scholar 

  • Spycher N, Pruess K, Ennis-King J (2003) CO2 − H2O mixtures in the geological sequestration of CO2. I: assessment and calculation of mutual solubilities from 12 to 100 °C and up to 600 bar. Geochim Cosmochim Acta 67:3015–3031

    Article  Google Scholar 

  • Spycher N, Pruess K (2005) CO2 − H2O mixtures in the geological sequestration of CO2. II: partitioning in chloride brines at 12–100 °C and up to 600 bar. Geochim Cosmochim Acta 69:3309–3320

    Article  Google Scholar 

  • Truesdell A, Jones B (1974) Wateq, a computer program for calculating chemical equilibria of natural waters. J Res Music Educ 2:233–274

    Google Scholar 

  • Wigand M, Carey JW, Schütt H, Spangenberg E, Erzinger J (2008) Geochemical effects of CO2 sequestration in sandstones under simulated in situ conditions of deep saline aquifers. Appl Geochem 23:2735–2745

    Article  Google Scholar 

  • Wilkinson M, Haszeldine R, Fallick A, Odling N, Stoker S, Gatliff R (2009) CO2-mineral reaction in a natural analogue for CO2 storage-implications for modeling. J Sediment Res 79:486–494

    Article  Google Scholar 

  • Wolery T (1992) Eq3/6, a software package for geochemical modeling of aqueous systems: Package overview and installation guide (version 7.0) ucrl-ma-110662. Technical Report, Lawrence Livermore National Laboratory, Livermore

  • Xu T, Sonnenthal EL, Spycher N, Pruess K (2006) TOUGHREACT: a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media. Comput Geosci 32:145–165

    Article  Google Scholar 

  • Xu T, Spycher N, Sonnenthal EL, Zhang G, Zheng L, Pruess K (2011) TOUGHREACT Version 2.0: a simulator for subsurface reactive transport under non-isothermal multiphase flow conditions. Comput Geosci 37:763–774

    Article  Google Scholar 

  • Zhang G, Spycher N, Sonnenthal E, Steefel C, Xu T (2008) Modeling reactive multiphase flow and transport of concentrated aqueous solutions. Nucl Technol 164:180–195

    Google Scholar 

  • Ziegler K (2006) Clay minerals of the permian Rotliegend group in the North Sea and adjacent areas. Clay Miner 41:355–393

    Article  Google Scholar 

Download references

Acknowledgments

This study is part of the joint research project CLEAN, sponsored by the German Federal Ministry of Education and Research (BMBF) within the framework of the geoscientific research and development program "GEOTECHNOLOGIEN" (Grant No. 03G0704). The authors thank GDF SUEZ E&P DEUTSCHLAND GMBH for research collaboration within this program. The authors also thank the GRS for fruitful discussions in the context of the database compilation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco De Lucia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Lucia, M., Bauer, S., Beyer, C. et al. Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas reservoir. Part I: from experimental data to a reference geochemical model. Environ Earth Sci 67, 563–572 (2012). https://doi.org/10.1007/s12665-012-1725-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-012-1725-9

Keywords

Navigation