Environmental Earth Sciences

, Volume 67, Issue 2, pp 563–572 | Cite as

Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas reservoir. Part I: from experimental data to a reference geochemical model

  • Marco De Lucia
  • Sebastian Bauer
  • Christof Beyer
  • Michael Kühn
  • Thomas Nowak
  • Dieter Pudlo
  • Viktor Reitenbach
  • Susanne Stadler
Special Issue


Modelling fluid–rock interactions induced by CO2 is a key issue when evaluating the technical feasibility and long-term safety assessment of CO2 storage projects in deep formations. The German R&D programme CLEAN (CO2 Large-Scale Enhanced Gas Recovery in the Altmark Natural Gas Field) investigated the almost depleted onshore gas reservoir located in the Rotliegend sandstone at over 3,000-m depth. The high salinity of the formation fluids and the elevated temperature in the reservoir exceed the validity limits of commonly available thermodynamic databases needed for predictive geochemical modelling. In particular, it is shown that the activity model of Pitzer has to be applied, even if necessary input data for this model are incomplete or inconsistent for complex systems and for the considered temperatures. Simulations based on Debye-Hückel activity model lead to severe, systematic discrepancies already in the simple proposed reference case where experimental data could be used for comparison. A simplified geochemical model, consistent with the average measured composition of formation fluids and the prevailing mineralogical assemblage of the host rock, identifies the mineral phases most likely to be considered at equilibrium with the formation fluid. The simulated reactions due to CO2 injection, under the hypothesis of local thermodynamical equilibrium, result in a moderate reactivity of the system, with the dissolution of anhydrite cementation and haematite being the most relevant expected mineral reactions. This is compensated, at equilibrium, by the precipitation of new carbonates, like calcite and siderite, for an overall very small loss of porous space. The simulated rather small effect of mineral alteration is also due to the scarce amount of water available for reactions in the reservoir. The results of the model are qualitatively in line with observations from batch experiments and from natural analogues.


CO2 storage Geochemical modelling High salinity Pitzer model CO2 solubility 



This study is part of the joint research project CLEAN, sponsored by the German Federal Ministry of Education and Research (BMBF) within the framework of the geoscientific research and development program "GEOTECHNOLOGIEN" (Grant No. 03G0704). The authors thank GDF SUEZ E&P DEUTSCHLAND GMBH for research collaboration within this program. The authors also thank the GRS for fruitful discussions in the context of the database compilation.


  1. Accornero M, Marini L (2009) Empirical prediction of the Pitzer’s interaction parameters for cationic Al species with both SiO2(aq) and CO2(aq): implications for the geochemical modelling of very saline solutions. Applied Geochemistry 24(5):747−759CrossRefGoogle Scholar
  2. Audigane P, Lions J, Gaus I, Robelin C, Durst P, Van der Meer B, Geel K, Oldenburg C, Xu T (2009) Geochemical modeling of CO2 injection into a methane gas reservoir at the K12-B field, North Sea. In: Grobe M, Pashin JC, Dodge RL (eds) Carbon dioxide sequestration in geological media? State of the science. AAPG Studies in Geology 59. American Association of Petroleum, USA, pp 499–519Google Scholar
  3. Benbow S, Metcalfe R, Wilson J (2008) Pitzer databases for use in thermodynamic modelling. Quintessa Technical Memorandum (unpublished)Google Scholar
  4. Beyer C, Li D, De Lucia M, Kühn M, Bauer S (2012) Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas reservoir. Part II: coupled reactive transport simulations. Environ Earth Sci. doi: 10.1007/s12665-012-1684-1 Google Scholar
  5. Christov C, Dickson AG, Møller N (2007) Thermodynamic modeling of aqueous aluminum chemistry and solid-liquid equilibria to high solution concentration and temperature. I. the acidic H–Al–Na–K–Cl–H2O system from 0 to 100° C. J Solut Chem 36(11):1495–1523CrossRefGoogle Scholar
  6. Davies C (1962) Ion association. Butterworth, Washington DCGoogle Scholar
  7. Dethlefsen F, Haase C, Ebert M, Dahmke A (2011) Uncertainties of geochemical modeling during CO2 sequestration applying batch equilibrium calculations. Environ Earth Sci 65(4):1105–1117CrossRefGoogle Scholar
  8. Dick J (2008) Calculation of the relative metastabilities of proteins using the CHNOSZ software package. Geochem Trans 9:10. doi: 10.1186/1467-4866-9-10 CrossRefGoogle Scholar
  9. Duan Z, Sun R (2003) An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem Geol 193(3–4):257–271CrossRefGoogle Scholar
  10. Duan Z, Sun R, Zhu C, Chou I (2006) An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl, and SO42−. Mar Chem 98(2–4):131–139CrossRefGoogle Scholar
  11. Duan Z, Møller N, Weare JH (1992) An equation of state for the Ch4-CO2-H2O system: I. pure systems from 0 to 1000 °C and 0 to 8000 bar. Geochim Cosmochim Acta 56:2605–2617CrossRefGoogle Scholar
  12. Gailhanou H, van Miltenburg J, Rogez J, Olives J, Amouric M, Gaucher E, Blanc P (2007) Thermodynamic properties of anhydrous smectite mx-80, illite imt-2 and mixed-layer illite smectite iscz-1 as determined by calorimetric methods. part I: Heat capacities, heat contents and entropies. Geochim Cosmochim Acta 71(22):5463–5473CrossRefGoogle Scholar
  13. Gaupp R (1996) Diagenesis types and their application in diagenesis mapping. Rev Mineral Geochem 11–12:1183–1199Google Scholar
  14. Gaus I (2010) Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks (review article). Int J Greenh Gas Control 4(1):73–89CrossRefGoogle Scholar
  15. Gaus I, Azaroual M, Czernichowski-Lauriol I (2005) Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea). Chem Geol 217(3–4):319–337CrossRefGoogle Scholar
  16. Gottschalk M (2007) Equations of state for complex fluids. Rev Mineral Geochem 65:49–97CrossRefGoogle Scholar
  17. Harvie C, Møller N, Weare J (1984) The prediction of mineral solubilities in natural waters: the Na–K–Mg–Ca–H–Cl–SO4–OH–HCO3–CO3–CO2–H2O system to high ionic strengths at 25 °C. Geochim Cosmochim Acta 48(4):723–751CrossRefGoogle Scholar
  18. Johnson JW, Oelkers E, Helgeson H (1992) SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 °C. Comp Geosci 19:899–947CrossRefGoogle Scholar
  19. Kühn M, Förster A, Großmann J, Meyer R, Reinicke K, Schäfer D, Wendel H (2011) CLEAN: Preparing for a CO2-based enhanced gas recovery in a depleted gas field in Germany. Energy Procedia 4:5520–5526CrossRefGoogle Scholar
  20. Kühn M, Tesmer M, Pilz P, Meyer R, Reinicke K, Förster A, Kolditz O, Schäfer D, Partners C (2012): CLEAN: CO2 large-scale enhanced gas recovery in the Altmark natural gas field (Germany): project overview. Environ Earth Sci. doi: 10.1007/s12665-012-1714-z
  21. Lüders V, Plessen B, Romer R, Weise S, Banks D, Hoth P, Dulski P, Schettler G (2010) Chemistry and isotopic composition of Rotliegend and Upper Carboniferous formation waters from the North German Basin. Chem Geol 276:198–208CrossRefGoogle Scholar
  22. Marini L (2007) Geological sequestration of carbon dioxide: thermodynamics, kinetics and reaction path modelling. Elsevier, OxfordGoogle Scholar
  23. Merkel B, Planer-Friedrich B, Nordstrom D (2005) Groundwater geochemistry. Springer, BerlinGoogle Scholar
  24. Moog H, Mönig H (2010) Erstellung von Parameterdateien für die Verwendung mit Chemapp und Phreeqc (BGR project 45-4500046190). Technical Report GRS, Braunschweig, GermanyGoogle Scholar
  25. Parkhurst D, Appelo C (1999) Users guide to Phreeqc (version 2). Technical Report, U.S. Geological SurveyGoogle Scholar
  26. Peterson S, Hack K (2007) The thermochemistry library Chemapp and its applications. Int J Mater Res 98:268–277Google Scholar
  27. Pitzer K (1973) Thermodynamics of electrolytes. I. theoretical basis and general equations. J Phys Chem B 77(2):268–277CrossRefGoogle Scholar
  28. Pudlo D, Reitenbach V, Albrecht D, Ganzer L, Gernert U, Wienand J, Kohlhepp B, Gaupp R (2012) The impact of diagenetic fluid–rock reactions on Rotliegend sandstone composition and petrophysical properties (Altmark area, Central Germany). Environ Earth Sci. doi: 10.1007/s12665-012-1723-y
  29. Regnault O, Lagneau V, Schneider H (2009) Experimental measurement of portlandite carbonation kinetics with supercritical CO2. Chem Geol 265:113–121CrossRefGoogle Scholar
  30. Rempel K, Liebscher A, Heinrich W, Schettler G (2011) An experimental investigation of trace element dissolution in carbon dioxide: Applications to the geological storage of CO2. Chem Geol 289(3–4):224–234CrossRefGoogle Scholar
  31. Rumpf B, Nicolaisen H, Ocal C, Maurer G (1994) Solubility of carbon dioxide in aqueous solutions of sodium chloride: experimental results and correlation. J Sol Chem 23:431–448CrossRefGoogle Scholar
  32. Spycher N, Pruess K, Ennis-King J (2003) CO2 − H2O mixtures in the geological sequestration of CO2. I: assessment and calculation of mutual solubilities from 12 to 100 °C and up to 600 bar. Geochim Cosmochim Acta 67:3015–3031CrossRefGoogle Scholar
  33. Spycher N, Pruess K (2005) CO2 − H2O mixtures in the geological sequestration of CO2. II: partitioning in chloride brines at 12–100 °C and up to 600 bar. Geochim Cosmochim Acta 69:3309–3320CrossRefGoogle Scholar
  34. Truesdell A, Jones B (1974) Wateq, a computer program for calculating chemical equilibria of natural waters. J Res Music Educ 2:233–274Google Scholar
  35. Wigand M, Carey JW, Schütt H, Spangenberg E, Erzinger J (2008) Geochemical effects of CO2 sequestration in sandstones under simulated in situ conditions of deep saline aquifers. Appl Geochem 23:2735–2745CrossRefGoogle Scholar
  36. Wilkinson M, Haszeldine R, Fallick A, Odling N, Stoker S, Gatliff R (2009) CO2-mineral reaction in a natural analogue for CO2 storage-implications for modeling. J Sediment Res 79:486–494CrossRefGoogle Scholar
  37. Wolery T (1992) Eq3/6, a software package for geochemical modeling of aqueous systems: Package overview and installation guide (version 7.0) ucrl-ma-110662. Technical Report, Lawrence Livermore National Laboratory, LivermoreGoogle Scholar
  38. Xu T, Sonnenthal EL, Spycher N, Pruess K (2006) TOUGHREACT: a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media. Comput Geosci 32:145–165CrossRefGoogle Scholar
  39. Xu T, Spycher N, Sonnenthal EL, Zhang G, Zheng L, Pruess K (2011) TOUGHREACT Version 2.0: a simulator for subsurface reactive transport under non-isothermal multiphase flow conditions. Comput Geosci 37:763–774CrossRefGoogle Scholar
  40. Zhang G, Spycher N, Sonnenthal E, Steefel C, Xu T (2008) Modeling reactive multiphase flow and transport of concentrated aqueous solutions. Nucl Technol 164:180–195Google Scholar
  41. Ziegler K (2006) Clay minerals of the permian Rotliegend group in the North Sea and adjacent areas. Clay Miner 41:355–393CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Marco De Lucia
    • 1
  • Sebastian Bauer
    • 2
  • Christof Beyer
    • 2
  • Michael Kühn
    • 1
  • Thomas Nowak
    • 3
  • Dieter Pudlo
    • 4
  • Viktor Reitenbach
    • 5
  • Susanne Stadler
    • 3
  1. 1.Helmholtz Centre Potsdam, GFZ German Research Centre for GeosciencesPotsdamGermany
  2. 2.Institute of Geosciences, Geohydromodelling, CAU Christian Albrechts University of KielKielGermany
  3. 3.Federal Institute for Geosciences and Natural Resources (BGR)HannoverGermany
  4. 4.Friedrich-Schiller-Universität Jena, Institute of Earth SciencesJenaGermany
  5. 5.Institute of Petroleum EngineeringClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations