Modeling, parameterization and evaluation of monitoring methods for CO2 storage in deep saline formations: the CO2-MoPa project

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Capture and geological sequestration of CO2 from large industrial sources is considered a measure for reducing anthropogenic emissions of CO2 and thus mitigating climate change. One of the main storage options proposed are deep saline formations, as they provide the largest potential storage capacities among the geologic options. A thorough assessment of this type of storage site therefore is required. The CO2-MoPa project aims at contributing to the dimensioning of CO2 storage projects and to evaluating monitoring methods for CO2 injection by an integrated approach. For this, virtual, but realistic test sites are designed geometrically and fully parameterized. Numerical process models are developed and then used to simulate the effects of a CO2 injection into the virtual test sites. Because the parameterization of the virtual sites is known completely, investigation as well as monitoring methods can be closely examined and evaluated by comparing the virtual monitoring result with the simulation. To this end, the monitoring or investigation method is also simulated, and the (virtual) measurements are recorded and evaluated like real data. Application to a synthetic site typical for the north German basin showed that pressure response has to be evaluated taking into account the layered structure of the storage system. Microgravimetric measurements are found to be promising for detecting the CO2 phase distribution. A combination of seismic and geoelectric measurements can be used to constrain the CO2 phase distribution for the anticline system used in the synthetic site.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. al Hagrey SA (2009) 2D optimisation of electrode arrays for borehole surveys. EAGE near surface geophysics, Dublin, p 5

  2. al Hagrey SA (2011a) 2D optimized electrode arrays for borehole resistivity tomography and CO2 sequestration modeling. Pure Appl Geophys 168. doi:10.1007/s00024-011-0369-0

  3. al Hagrey SA (2011b) CO2 plume modeling in deep saline reservoirs by 2D ERT in boreholes. Lead Edge 30(1):24–33. doi:10.1190/1.3535429

    Article  Google Scholar 

  4. al Hagrey SA (2012) 2D model study of CO2 plumes in saline reservoirs by borehole resistivity tomography. Int J Geophys (Article ID 805059) 2011:12. doi:10.1155/2011/805059

  5. Amonette JE, Barr JL, Dobeck LM, Gullickson K, Walsh SJ (2010) Spatiotemporal changes in CO2 emissions during the second ZERT injection, August–September 2008. Environ Earth Sci 60(2):263–272. doi:10.1007/s12665-009-0402-0

    Article  Google Scholar 

  6. Arts R, Chadwick A, Eiken O, Thibeau S, Nooner S (2008) Ten years’ experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore Norway. First Break 26:65–72

    Google Scholar 

  7. Baldschuhn R, Binot F, Flieg S, Kockel F (2001) Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordseesektor. Strukturen, Strukturentwicklung, Paläogeographie. Geol Jahrbuch Reihe A 153:88

  8. Bauer S, Beyer C, Kolditz O (2006) Assessing measurement uncertainty of first order degradation rates in heterogeneous aquifers. Water Resour Res 42(1):W01420. doi:10.1029/2004WR003878

    Article  Google Scholar 

  9. Bauer S, Benisch K, Mitiku AB, Li D, Beyer C, Graupner B (2011) Development and application of the coupled OpenGeoSys-ECLIPSE simulation system for the simulation of CO2 storage in saline aquifers. Les Rencontres scientifiques d’IFP Energies nouvelles. In: Proceedings of flows and mechanics in natural porous media from pore to field scale. Pore2Field, 16–18 November 2011, IFP Energies nouvelles, Paris, France

  10. Beier K, Holzheid A, Kahl WA (2010) Influence of the reactive surface and the temperature on the dissolution rate of carbonates during the CO2-sequestration process. EGU-Wien, Geophysical Research Abstracts Vol. 12 # EGU2010-4031, EGU General Assembly Wien 2010

  11. Beier K, Holzheid A (2011) Results of an experimental study on geochemical behaviors of potential reservoir materials during the CO2-sequestration process: determination of kinetic data and reasons for their variations. DMG/ÖMG/DGK Jahrestagung, Salzburg 20.09.2011–24.09.2011, Abstract #MS20-T4 (CD-ROM)

  12. Benisch K, Bauer S (2011) Investigation of large-scale pressure propagation and monitoring for CO2 injection using a real site model. Models-repositories of knowledge, proceedings ModelCARE2011, Leipzig, Germany

  13. Benisch K, Graupner B, Bauer S (2011) Development and application of a coupled ECLIPSE-GeoSys modelling system for simulation of CO2 storage in saline aquifers. In: 6th TCCS conference, Trondheim

  14. Bergmann P, Yang C, Lüth S, Juhlin C, Cosma C (2011) Time-lapse processing of 2D seismic profiles with testing of static correction methods at the CO2 injection site Ketzin (Germany). J Appl Geophys 75(1):124–139

    Article  Google Scholar 

  15. Beyer C, Bauer S, Kolditz O (2006) Uncertainty assessment of contaminant plume length estimates in heterogeneous aquifers. J Contam Hydrol 87(1–2):73–95. doi:10.1016/j.jconhyd.2006.04.006

    Article  Google Scholar 

  16. Beyer C, Chen C, Gronewold J, Kolditz O, Bauer S (2007) Determination of first-order degradation rate constants from monitoring networks. Ground Water 45(6):774–785. doi:10.1111/j.1745-6584.2007.00348.x

    Article  Google Scholar 

  17. Beyer C, Konrad W, Rügner H, Bauer S, Liedl R, Grathwohl P (2009) Model-based prediction of long-term leaching of contaminants from secondary materials in road constructions and noise protection dams. Waste Manag 29(2):839–850. doi:10.1016/j.wasman.2008.06.025

    Article  Google Scholar 

  18. Beyer C, Li D, De Lucia M, Kühn M, Bauer S (2012) Modelling of CO2 induced fluid-rock interactions in the Altensalzwedel gas reservoir—coupled reactive transport simulations. Environ Earth Sci (this issue). doi:10.1007/s12665-012-1684-1

  19. Birkholzer JT, Zhou Q, Tsang CF (2009) Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on pressure response in stratified systems. Int J Greenhouse Gas Control 3(2):181–194

    Article  Google Scholar 

  20. Breunig M, Schilberg B, Thomsen A, Kuper PV, Jahn M, Butwilowski E (2009) DB4GeO: developing 3D geo-database services. In: Proceedings 4th international workshop on 3D geo-information 3DGeoInfo, Ghent, Belgium, pp 45–52

  21. Bohlen T (2002) Parallel 3D viscoelastic finite difference seismic modeling. Comput Geosci 28:887–889

    Article  Google Scholar 

  22. CEC (2007) Communication from the commission to the council, the European parliament, the European economic and social committee and the committee of the regions: limiting global climate change to 2 degrees Celsius—the way ahead for 2020 and beyond, impact assessment, Brussels 2007

  23. Chadwick RA, Zweigel P, Gregersen U, Kirby GA, Holloway S, Johannessen PN (2004) Geological reservoir characterization of a CO2 storage site: the Utsira Sand, Sleipner, northern North Sea. Energy 29:1371–1381

    Article  Google Scholar 

  24. Chadwick A, Arts R, Bernstone Ch, May F, Thibeau S, Zweigel P (2006) BEST PRACTICE FOR THE STORAGE OF CO2 IN SALINE AQUIFERS—Observations and guidelines from the SACS and CO2STORE projects. EU Research report, p 289. http://nora.nerc.ac.uk/2959/

  25. Chadwick RA et al (2009a) Review of monitoring issues and technologies associated with the long-term underground storage of carbon dioxide. In: Evans DJ, Chadwick A (eds) Underground gas storage: worldwide experiences and future development in the UK and Europe. Geological Society Special Publication, London, pp 257–275

    Google Scholar 

  26. Chadwick A, Williams G, Delepine N, Clochard V, Labat K, Sturton S, Buddensiek ML, Dillen M, Nickel M, Lima AL, Arts R, Neele F, Rossi G (2010) Quantitative analysis of time-lapse seismic monitoring data at the Sleipner CO2 storage operation. Lead Edge 29:170–177

    Article  Google Scholar 

  27. Chadwick RA, Noy D, Arts R, Eiken O (2009b) Latest time-lapse seismic data from Sleipner yield new insights into CO2 plume development. Energy Procedia 1(1):2103–2110

    Article  Google Scholar 

  28. Class H, Ebigbo A, Helmig R, Dahle HK, Nordbotten JK, Celia MA, Audigane P, Darcis M, Ennis-King J, Fan Y, Flemisch B, Gasda SE, Jin M, Krug S, Labregere D, Beni AM, Pawar RJ, Sbai A, Thomas SG, Trenty L, Wei L (2009) A benchmark study on problems related to CO2 storage in geologic formations. Comput Geosci 13(4):409–434

    Google Scholar 

  29. Computer Modelling Group Ltd (2006) GEM User Guide, 2006. http://www.cmgroup.com/software/brochures/GEMFactSheet.pdf

  30. Darcis M, Class H, Flemisch B, Helmig R (2011) Sequential model coupling for feasibility studies of CO2 storage in deep saline aquifers. Oil Gas Sci Technol Revue de l’IFP 66(1):93–103

    Article  Google Scholar 

  31. De Lucia M, Albrecht D, Bauer S, Beyer C, Kuehn M, Nowak T, Pudlo D, Stadler S (2012) Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas Reservoir. Part I-from experimental data to a reference geochemical model. Environ Earth Sci (this issue)

  32. Dethlefsen F, Benisch K, Bauer S, Ebert M, Dahmke A (2012) A geological database as planning basis for the underground land use. Sedimentology (in prep.)

  33. Dethlefsen F, Dörr C, Ebert M (2011) The relevance and the determination of mineral dissolution kinetics in high pressure experiments and their use in numerical models. General Assembly of the Geosciences Union, April 3–8, 2011, Vienna

  34. Dethlefsen F, Haase C, Ebert M, Dahmke A (2012b) Uncertainties of geochemical modeling during CO2 sequestration applying batch equilibrium calculations. Environ Earth Sci 65(4):1105–1117. doi:10.1007/s12665-011-1360-x

    Article  Google Scholar 

  35. Duan Z, Li D (2008) Coupled phase and aqueous species equilibrium of the H2O–CO2–NaCl–CaCO3 system from 0 to 250°C, 1 to 1000 bar with NaCl concentrations up to saturation of halite. Geochim Cosmochim Acta 72:5128–5145

    Article  Google Scholar 

  36. Eriksson G, Petersen S (2008) ChemApp—the thermochemistry library for your software. Programmer’s manual edition 3.12. GTT-Technologies, Herzogenrath, Germany, 1996–2008

  37. Fahrner S, Schäfer D, Dethlefsen F, Dahmke A (2011) Reactive transport modelling to assess geochemical monitoring for detection of CO2 intrusion into shallow aquifers. Energy Procedia 4:3155–3162

    Article  Google Scholar 

  38. Fahrner S, Schäfer D, Dethlefsen F, Dahmke A (2012a) Reactive modelling of CO2 intrusion into freshwater aquifers: current requirements, approaches and limitations to account for temperature and pressure effects. Environ Earth Sci (in press). doi:10.1007/s12665-011-1361-9

  39. Fahrner S, Schäfer D, Dahmke A (2012b) A monitoring strategy to detect CO2 intrusion in deeper freshwater aquifers. Int J Greenhouse Gas Control (in press)

  40. Fischedick M, Esken A, Luhmann H, Schüwer D, Supersberger N (2007) Geologische CO2-Speicherung als klimapolitische Handlungsoption—Technologien, Konzepte, Perspektiven. Wuppertal 2007, ISBN 978-3-929944-73-0 (Wuppertal Spezial Nr. 35)

  41. Flemisch B, Darcis M, Erbertseder K, Faigle B, Lauser A, Mosthaf K, Müthing S, Nuske P, Tatomir A, Wolff M, Helmig R (2011) DUMUX: DUNE for multi-{phase, component, scale, physics, …} flow and transport in porous media. Adv Water Resour. doi:10.1016/j.advwaters.2011.03.007

  42. GeoWall (2010) http://www.geowall.org/. Accessed 22 Jan 2010

  43. Görke U-J, Park C-H, Wang W, Singh AK, Kolditz O (2011) Numerical simulation of multiphase hydromechanical processes induced by CO2 injection in deep saline aquifers. Oil Gas Sci Technol 66(1):105–118

    Article  Google Scholar 

  44. Graupner B, Li D, Bauer S (2011) The coupled simulator ECLIPSE—OpenGeoSys for the simulation of CO2 storage in saline formations. Energy Procedia 4:3794–3800

    Article  Google Scholar 

  45. Graupner B, Li D, Bauer S (2010) Numerical investigation of long-term geomechanical and geochemical changes within a reservoir and the cap rock during CO2 storage. In: Carrera J (ed) Proceedings of the XVIII international conference in water resources CMWR 2010, Barcelona, Spain

  46. Haase C, Ebert M, Dethlefsen F, Dahmke A (2010) Uncertainties in hydrogeochemical modelling of water-mineral interaction in the field of CO2-Storage. Second EAGE CO2 Geological Storage Workshop, March 11–12, 2010, Berlin

  47. Hese F (2011) Geologische 3D-Modelle des Untergrundes Schleswig-Holsteins—ein Beitrag für Potenzialstudien zur Nutzung von tiefen salinen Aquiferen. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 162(4):389–404

    Article  Google Scholar 

  48. Hese F, Liebsch-Dörschner T, Offermann P, Rheinländer J, Rosenbaum S, Thomsen C (2012) Geologische Modelle der Deck- und Speichergesteine Schleswig-Holstein. Schlussbericht des Teilvorhabens M6 im Rahmen des Verbundprojektes CO2-MoPa Modellierung und Parametrisierung von CO2-Speicherung in tiefen, salinen Speichergesteinen für Dimensionierungs- und Risikoanalysen; Vorhaben: Dimensionierung und Risikoanalysen bei der CO2-Speicherung - Sonderprogramm GEOTECHNOLOGIEN; 107 S., Flintbek

  49. IEA (2011) World energy outlook 2011. International energy agency, Vienna. http://www.iea.org

  50. Kahl WA, Holzheid A (2010) Estimated and “true” geometric surfaces and their possible impact on experimentally and thermodynamically derived mineral dissolution and precipitation rates in CO2-brine-mineral reactions. DMG Tagung, Münster 20.09.2010–22.09.2010, Abstract #256 (CD-ROM)

  51. Kiessling D, Schmidt-Hattenberger C, Schuett H, Schilling F, Krueger K, Schoebel B, Danckwardt E, Kummerow J, the CO2SINK Group (2010) Geoelectrical methods for monitoring geological CO2 storage: first results from crosshole and surface-downhole measurements from the CO2SINK test site at Ketzin (Germany). Int J Greenhouse Gas Control 4:816–826

    Google Scholar 

  52. Knopf S, May F, Müller C, Gerling JP (2010) Neuberechnung möglicher Kapazitäten zur CO2-Speicherung in tiefen Aquifer-Strukturen. Energiewirtschaftliche Tagesfragen 60:76–80

    Google Scholar 

  53. Kolditz O, Bauer S (2004) A process-oriented approach to computing multi-field problems in porous media. J Hydroinform 6(3):225–244

    Google Scholar 

  54. Kolditz O, Bauer S, Bilke L, Böttcher N, Delfs J, Fischer T, Görke U, Kalbacher T, Kosakowski G, McDermott C, Park C, Radu F, Rink K, Shao H, Shao H, Sun F, Sun Y, Singh A, Taron J, Walther M, Wang W, Watanabe N, Wu Y, Xie M, Xu W, Zehner B (2012) OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci (this issue). doi:10.1007/s12665-012-1546-x

  55. Kolditz O, Bauer S, Beyer C, Böttcher N, Dietrich P, Görke UJ, Kalbacher T, Park CH, Sauer U, Schütze C, Shao H, Singh A, Taron J, Wang W, Watanabe N (2012) A systematic benchmarking approach for geologic CO2 injection and storage. Environ Earth Sci (this issue). doi:10.1007/s12665-012-1656-5

  56. Kühn M et al (2012) CLEAN: CO2 large-scale enhanced gas recovery in the Altmark natural gas field (Germany): Project overview. Environ Earth Sci (this issue)

  57. Lamert H, Geistlinger H, Werban U, Schütze C, Peter A, Hornbruch G, Schulz A, Pohlert M, Kalia S, Beyer M, Großmann J, Dahmke A, Dietrich P (2012) Feasibility of geoelectrical monitoring and multi-phase modeling for process understanding of gaseous CO2 injection into a shallow aquifer. Environ Earth Sci (this issue)

  58. Li D, Bauer S (2009) Development of a coupled transport and geochemical reaction code and a first application to CO2 sequestration. In: Proceedings TreProII, Karlsruhe, p 103

  59. Li D, Graupner B, Bauer S (2011) A method for calculating the liquid density for the CO2–H2O–NaCl system under CO2 storage condition. Energy Procedia 4:3817–3824

    Article  Google Scholar 

  60. Loke MH, Acworth I, Dahlin T (2003) A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor Geophys 34:182–187

    Article  Google Scholar 

  61. Lu C, Lichtner PC (2007) High resolution numerical investigation on the effect of convective instability on long term CO2 storage in saline aquifers. J Phys Conf Ser 78:012042. doi:10.1088/1742-6596/78/1/012042

    Article  Google Scholar 

  62. Lüth S, Bergmann P, Cosma C, Enescu N, Giese R, Götz J, Ivanova A, Juhlin C, Kashubin A, Yang C, Zhang F (2011) Time-lapse seismic surface and down-hole measurements for monitoring CO2 storage in the CO2SINK project (Ketzin, Germany). Energy Procedia 4:3435–3442

    Article  Google Scholar 

  63. Metz B, Davidson O, de Coninck H, Loos M, Meyer L (2005) Carbon dioxide capture and storage. IPCC Spec Rep, Cambridge University Press, Cambridge

    Google Scholar 

  64. Mukhopadhyay S, Birkholzer JT, Nicot J-P, Hosseini SA (2012) A model comparison initiative for a CO2 injection field test: an introduction to sim-SEQ. Environ Earth Sci (this issue). doi:10.1007/s12665-012-1668-1

  65. Müthing S, Bastian P (2011) Dune-multidomaingrid: a metagrid approach to subdomain modeling (to appear in Advances in Dune), Springer

  66. Park C-H, Taron J, Görke U-J, Singh AK, Kolditz O (2011) The fluidal interface is where the action is in CO2 sequestration and storage: hydromechanical analysis on mechanical failure. Energy Procedia 4:3691–3698

    Article  Google Scholar 

  67. Oldenborger GA, Routh PS, Knoll MD (2007) Model reliability for 3D electrical resistivity tomography: application of the volume of investigation index to a time-lapse monitoring experiment. Geophysics 72(4):167–175

    Article  Google Scholar 

  68. Oldenburg DW, Li Y (1999) Estimating depth of investigation in DC resistivity and IP surveys. Geophysics 64:403–416

    Article  Google Scholar 

  69. Palandri JL, Kharaka YK (2004) A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling, p 64. USGS, Menlo Park, CA, USA

  70. Park Y-C, Huh D-G, Park C-H (2012) A pressure monitoring method to warn CO2 leakage in geological storage sites. Environ Earth Sci (this issue). doi:10.1007/s12665-012-1667-2

  71. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey, Denver

    Google Scholar 

  72. Peter A, Lamert H, Beyer M, Hornbruch G, Heinrich B, Schulz A, Geistlinger H, Schreiber P, Dietrich P, Werban U, Vogt C, Richnow HH, Großmann J, Dahmke A (2012) Investigation of the geochemical impact of CO2 on shallow groundwater: design and implementation of a CO2 injection test in Northeast Germany. Environ Earth Sci (this issue). doi:10.1007/s12665-012-1700-5

  73. Pruess K, Bielinski A, Ennis-King J, Fabriol R, Le Gallo Y, Garcia J, Jessen K, Kovscek T, Law DHS, Lichtner P, Oldenburg C, Pawar R, Rutqvist J, Steefel C, Travis B, Tsang CF, White S, Xu T (2003) Code intercomparison builds confidence in numerical models for geologic disposal of CO2. In: Gale J, Kaya Y (eds) GHGT-6 conference proceedings: greenhouse gas control technologies, pp 463–470, Kyoto, Japan

  74. Pruess K (2004) The tough codes—a family of simulation tools for multiphase flow and transport processes in permeable media. Vadose Zone J 3(3):738–746

    Google Scholar 

  75. Rein A, Bauer S, Dietrich P, Beyer C (2009) Influence of temporally variable groundwater flow conditions on point measurements and contaminant mass flux estimations. J Contam Hydrol 108(3–4):118–133

    Article  Google Scholar 

  76. Rodosta TR, Litynski JT, Plasynski SI, Hickman S, Frailey S, Myer L (2011) U.S. Department of energy’s: site screening, site selection, and initial characterization for storage of CO2 in deep geological formations. Energy Procedia 4:4664–4671

    Article  Google Scholar 

  77. Ringrose P, Atbi M, Mason D, Espinassous M, Myhrer Ø, Iding M, Mathieson A, Wright I (2009) Plume development around well KB-502 at the In Salah CO2 storage site. First Break 27(1):85–89

    Google Scholar 

  78. Schäfer D, Schlenz B, Dahmke A (2004) Evaluation of exploration and monitoring methods for verification of natural attenuation using the virtual aquifer approach. Biodegrad J 15(6):453–465

    Article  Google Scholar 

  79. Schäfer F, Walter L, Class H, Müller C (2011) The regional pressure impact of CO2 storage: a showcase study from the North German Basin. Environ Earth Sci 65(7):2037–2049. doi:10.1007/s12665-011-1184-8

    Article  Google Scholar 

  80. Schmidt S, Götze HJ, Fichler Ch, Alvers M (2010) IGMAS+: a new 3D gravity, FTG and magnetic modelling software. Extended abstract. In: Zipf A, Behncke K, Hillen F, Schaefermeyer J (eds) Geoinformatik 2010 ‘Die Welt im Netz’, Konferenzband, 17.-19. März, Kiel, Akad. Verlagsgesellschaft (AKA), Heidelberg, pp 57–63, ISBN 978-3-89838-335-6 Schlumberger. Eclipse Technical Description 2010.1, 2010

  81. Schütze C, Sauer U, Beyer K, Lamert H, Strauch G, Braeuer K, Flechsig C, Kaempf H, Dietrich P (2012) Natural analogues—a potential approach for developing reliable monitoring methods to understand subsurface CO2 migration processes. Environ Earth Sci (this issue). doi:10.1007/s12665-012-1701-4

  82. Smith T, Hoversten M, Gasperikova E, Morrison F (1999) Sharp boundary inversion of 2D magnetotelluric data. Geophys Prospect 47:469–486

    Article  Google Scholar 

  83. Steuer A, Siemon B, Auken E (2009) A comparison of helicopter-borne electromagnetics in frequency- and time-domain at the Cuxhaven valley in Northern Germany. J Appl Geophys 67:194–205

    Article  Google Scholar 

  84. Strahser M, al Hagrey SA, Rabbel W (2010) CO2-migration in saline formation—first results of geoelectric and seismic numeric modeling. In: Mitteilungen, Deutsche Geophysikalische Gesellschaft (DGG), 2/2010, pp 4–14 (in German)

  85. Taron J, Park C-H, Görke, U-J, Wang W, Kolditz O (2011) Numerical analysis of CO2 injection into deformable saline reservoirs. In: Conference proceedings IVth international conference on computational methods for coupled problems in science and engineering, Kos Island, Greece

  86. Tenzer H, Park CH, Kolditz O, McDermott CI (2010) Application of the geomechanical facies approach and comparison of exploration and evaluation methods used at Soultz-sous-Forts (France) and Spa Urach (Germany) geothermal sites. Environ Earth Sci 61(4):853–880. doi:10.1007/s12665-009-0403-z

    Article  Google Scholar 

  87. Thomsen A, Schmidt S, Götze HJ, Breunig M, Schilberg B, Kuper P (2010) On the way to synoptic interpretation of geoscientific data in joint CCS project CO2-MoPa. Extended Abstract. In: Zipf A, Behncke K, Hillen F, Schaefermeyer J (eds) Geoinformatik 2010 ‘Die Welt im Netz’, Konferenzband, 17.-19. März, Kiel, Akad. Verlagsgesellschaft (AKA), Heidelberg, pp 57–63, ISBN 978-3-89838-335-6

  88. US Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory (2008) Carbon sequestration atlas of the United States and Canada, 2nd edn. US Department of Energy, National Energy Technology Laboratory, Morgantown, West Virginia

  89. Wang S, Jaffe PR (2004) Dissolution of a mineral phase in potable aquifers due to CO2 releases from deep formations; effect of dissolution kinetics. Energy Convers Manag 45(18–19):2833–2848

    Article  Google Scholar 

  90. Wang W, Kosakowski G, Kolditz O (2009) A parallel finite element scheme for thermo-hydro-mechanical (THM) coupled problems in porous media. Comput Geosci 35(8):1631–1641

    Article  Google Scholar 

  91. Wang W, Rutqvist J, Gorke U-J, Birkholzer JT, Kolditz O (2011) Non-isothermal flow in low permeable porous media: a comparison of unsaturated and two-phase flow approaches. Environ Earth Sci 62(6):1197–1207. doi:10.1007/s12665-010-0608-1

    Article  Google Scholar 

  92. Würdemann H, Möller F, Kühn M, Heidug W, Christensen NP, Borm G, Schilling FR (2010) CO2SINK—from site characterisation and risk assessment to monitoring and verification: one year of operational experience with the field laboratory for CO2 storage at Ketzin, Germany. Int J Greenhouse Gas Control 4(6):938–951

    Article  Google Scholar 

  93. White DJ, Burrowes G, Davis T, Hajnal Z, Hirsche K, Hutcheon I, Majer E, Rostron B, Whittaker S (2004) Greenhouse gas sequestration in abandoned oil reservoirs: the international energy agency Weyburn pilot project. GSA Today 14:4–10

    Article  Google Scholar 

  94. Xie M, Bauer S, Kolditz O, Nowak T, Shao H (2006) Numerical simulation of reactive processes in an experiment with partially saturated bentonite. J Contam Hydrol 83(1–2):122–147. doi:10.1016/j.jconhyd.2005.11.003

    Article  Google Scholar 

  95. Xu T, Sonnenthal E, Spycher N, Pruess K (2006) TOUGHREACT-A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestration. Comput Geosci 32(2):145–165

    Google Scholar 

  96. Xue Z, Kim J, Mito S, Kitamura K, Matsuoka T (2009) Detecting and monitoring CO2 with P-wave velocity and resistivity from both laboratory and field scales, p 6. Society of petroleum engineers, SPE 126885. doi:10.2118/126885-MS

  97. Zhou Q, Birkholzer JT, Tsang CF, Rutqvist J (2008) A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations. Int J Greenhouse Gas Control 2(4):626–639

    Article  Google Scholar 

Download references

Acknowledgments

This study is funded by the German Federal Ministry of Education and Research (BMBF), EnBW Energie Baden-Württemberg AG, E.ON Energie AG, E.ON Gas Storage AG, RWE Dea AG, Vattenfall Europe Technology Research GmbH, Wintershall Holding AG and Stadtwerke Kiel AG as part of the CO2-MoPa joint project in the framework of the Special Program GEOTECHNOLOGIEN. The authors thank all project partners in Kiel, Leipzig and Stuttgart and colleagues of the GEOTECHNOLOGIEN program (publication number GEOTECH-1992) for their help, assistance and efficient cooperation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Bauer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bauer, S., Class, H., Ebert, M. et al. Modeling, parameterization and evaluation of monitoring methods for CO2 storage in deep saline formations: the CO2-MoPa project. Environ Earth Sci 67, 351–367 (2012). https://doi.org/10.1007/s12665-012-1707-y

Download citation

Keywords

  • CO2 storage
  • Saline formation
  • Numerical simulation
  • Monitoring