Environmental Earth Sciences

, Volume 67, Issue 2, pp 351–367 | Cite as

Modeling, parameterization and evaluation of monitoring methods for CO2 storage in deep saline formations: the CO2-MoPa project

  • S. BauerEmail author
  • H. Class
  • M. Ebert
  • V. Feeser
  • H. Götze
  • A. Holzheid
  • O. Kolditz
  • Sabine Rosenbaum
  • W. Rabbel
  • D. Schäfer
  • A. Dahmke
Special Issue


Capture and geological sequestration of CO2 from large industrial sources is considered a measure for reducing anthropogenic emissions of CO2 and thus mitigating climate change. One of the main storage options proposed are deep saline formations, as they provide the largest potential storage capacities among the geologic options. A thorough assessment of this type of storage site therefore is required. The CO2-MoPa project aims at contributing to the dimensioning of CO2 storage projects and to evaluating monitoring methods for CO2 injection by an integrated approach. For this, virtual, but realistic test sites are designed geometrically and fully parameterized. Numerical process models are developed and then used to simulate the effects of a CO2 injection into the virtual test sites. Because the parameterization of the virtual sites is known completely, investigation as well as monitoring methods can be closely examined and evaluated by comparing the virtual monitoring result with the simulation. To this end, the monitoring or investigation method is also simulated, and the (virtual) measurements are recorded and evaluated like real data. Application to a synthetic site typical for the north German basin showed that pressure response has to be evaluated taking into account the layered structure of the storage system. Microgravimetric measurements are found to be promising for detecting the CO2 phase distribution. A combination of seismic and geoelectric measurements can be used to constrain the CO2 phase distribution for the anticline system used in the synthetic site.


CO2 storage Saline formation Numerical simulation Monitoring 



This study is funded by the German Federal Ministry of Education and Research (BMBF), EnBW Energie Baden-Württemberg AG, E.ON Energie AG, E.ON Gas Storage AG, RWE Dea AG, Vattenfall Europe Technology Research GmbH, Wintershall Holding AG and Stadtwerke Kiel AG as part of the CO2-MoPa joint project in the framework of the Special Program GEOTECHNOLOGIEN. The authors thank all project partners in Kiel, Leipzig and Stuttgart and colleagues of the GEOTECHNOLOGIEN program (publication number GEOTECH-1992) for their help, assistance and efficient cooperation.


  1. al Hagrey SA (2009) 2D optimisation of electrode arrays for borehole surveys. EAGE near surface geophysics, Dublin, p 5Google Scholar
  2. al Hagrey SA (2011a) 2D optimized electrode arrays for borehole resistivity tomography and CO2 sequestration modeling. Pure Appl Geophys 168. doi: 10.1007/s00024-011-0369-0
  3. al Hagrey SA (2011b) CO2 plume modeling in deep saline reservoirs by 2D ERT in boreholes. Lead Edge 30(1):24–33. doi: 10.1190/1.3535429 CrossRefGoogle Scholar
  4. al Hagrey SA (2012) 2D model study of CO2 plumes in saline reservoirs by borehole resistivity tomography. Int J Geophys (Article ID 805059) 2011:12. doi: 10.1155/2011/805059
  5. Amonette JE, Barr JL, Dobeck LM, Gullickson K, Walsh SJ (2010) Spatiotemporal changes in CO2 emissions during the second ZERT injection, August–September 2008. Environ Earth Sci 60(2):263–272. doi: 10.1007/s12665-009-0402-0 CrossRefGoogle Scholar
  6. Arts R, Chadwick A, Eiken O, Thibeau S, Nooner S (2008) Ten years’ experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore Norway. First Break 26:65–72Google Scholar
  7. Baldschuhn R, Binot F, Flieg S, Kockel F (2001) Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordseesektor. Strukturen, Strukturentwicklung, Paläogeographie. Geol Jahrbuch Reihe A 153:88Google Scholar
  8. Bauer S, Beyer C, Kolditz O (2006) Assessing measurement uncertainty of first order degradation rates in heterogeneous aquifers. Water Resour Res 42(1):W01420. doi: 10.1029/2004WR003878 CrossRefGoogle Scholar
  9. Bauer S, Benisch K, Mitiku AB, Li D, Beyer C, Graupner B (2011) Development and application of the coupled OpenGeoSys-ECLIPSE simulation system for the simulation of CO2 storage in saline aquifers. Les Rencontres scientifiques d’IFP Energies nouvelles. In: Proceedings of flows and mechanics in natural porous media from pore to field scale. Pore2Field, 16–18 November 2011, IFP Energies nouvelles, Paris, FranceGoogle Scholar
  10. Beier K, Holzheid A, Kahl WA (2010) Influence of the reactive surface and the temperature on the dissolution rate of carbonates during the CO2-sequestration process. EGU-Wien, Geophysical Research Abstracts Vol. 12 # EGU2010-4031, EGU General Assembly Wien 2010Google Scholar
  11. Beier K, Holzheid A (2011) Results of an experimental study on geochemical behaviors of potential reservoir materials during the CO2-sequestration process: determination of kinetic data and reasons for their variations. DMG/ÖMG/DGK Jahrestagung, Salzburg 20.09.2011–24.09.2011, Abstract #MS20-T4 (CD-ROM)Google Scholar
  12. Benisch K, Bauer S (2011) Investigation of large-scale pressure propagation and monitoring for CO2 injection using a real site model. Models-repositories of knowledge, proceedings ModelCARE2011, Leipzig, GermanyGoogle Scholar
  13. Benisch K, Graupner B, Bauer S (2011) Development and application of a coupled ECLIPSE-GeoSys modelling system for simulation of CO2 storage in saline aquifers. In: 6th TCCS conference, TrondheimGoogle Scholar
  14. Bergmann P, Yang C, Lüth S, Juhlin C, Cosma C (2011) Time-lapse processing of 2D seismic profiles with testing of static correction methods at the CO2 injection site Ketzin (Germany). J Appl Geophys 75(1):124–139CrossRefGoogle Scholar
  15. Beyer C, Bauer S, Kolditz O (2006) Uncertainty assessment of contaminant plume length estimates in heterogeneous aquifers. J Contam Hydrol 87(1–2):73–95. doi: 10.1016/j.jconhyd.2006.04.006 CrossRefGoogle Scholar
  16. Beyer C, Chen C, Gronewold J, Kolditz O, Bauer S (2007) Determination of first-order degradation rate constants from monitoring networks. Ground Water 45(6):774–785. doi: 10.1111/j.1745-6584.2007.00348.x CrossRefGoogle Scholar
  17. Beyer C, Konrad W, Rügner H, Bauer S, Liedl R, Grathwohl P (2009) Model-based prediction of long-term leaching of contaminants from secondary materials in road constructions and noise protection dams. Waste Manag 29(2):839–850. doi: 10.1016/j.wasman.2008.06.025 CrossRefGoogle Scholar
  18. Beyer C, Li D, De Lucia M, Kühn M, Bauer S (2012) Modelling of CO2 induced fluid-rock interactions in the Altensalzwedel gas reservoir—coupled reactive transport simulations. Environ Earth Sci (this issue). doi: 10.1007/s12665-012-1684-1
  19. Birkholzer JT, Zhou Q, Tsang CF (2009) Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on pressure response in stratified systems. Int J Greenhouse Gas Control 3(2):181–194CrossRefGoogle Scholar
  20. Breunig M, Schilberg B, Thomsen A, Kuper PV, Jahn M, Butwilowski E (2009) DB4GeO: developing 3D geo-database services. In: Proceedings 4th international workshop on 3D geo-information 3DGeoInfo, Ghent, Belgium, pp 45–52Google Scholar
  21. Bohlen T (2002) Parallel 3D viscoelastic finite difference seismic modeling. Comput Geosci 28:887–889CrossRefGoogle Scholar
  22. CEC (2007) Communication from the commission to the council, the European parliament, the European economic and social committee and the committee of the regions: limiting global climate change to 2 degrees Celsius—the way ahead for 2020 and beyond, impact assessment, Brussels 2007Google Scholar
  23. Chadwick RA, Zweigel P, Gregersen U, Kirby GA, Holloway S, Johannessen PN (2004) Geological reservoir characterization of a CO2 storage site: the Utsira Sand, Sleipner, northern North Sea. Energy 29:1371–1381CrossRefGoogle Scholar
  24. Chadwick A, Arts R, Bernstone Ch, May F, Thibeau S, Zweigel P (2006) BEST PRACTICE FOR THE STORAGE OF CO2 IN SALINE AQUIFERS—Observations and guidelines from the SACS and CO2STORE projects. EU Research report, p 289.
  25. Chadwick RA et al (2009a) Review of monitoring issues and technologies associated with the long-term underground storage of carbon dioxide. In: Evans DJ, Chadwick A (eds) Underground gas storage: worldwide experiences and future development in the UK and Europe. Geological Society Special Publication, London, pp 257–275Google Scholar
  26. Chadwick A, Williams G, Delepine N, Clochard V, Labat K, Sturton S, Buddensiek ML, Dillen M, Nickel M, Lima AL, Arts R, Neele F, Rossi G (2010) Quantitative analysis of time-lapse seismic monitoring data at the Sleipner CO2 storage operation. Lead Edge 29:170–177CrossRefGoogle Scholar
  27. Chadwick RA, Noy D, Arts R, Eiken O (2009b) Latest time-lapse seismic data from Sleipner yield new insights into CO2 plume development. Energy Procedia 1(1):2103–2110CrossRefGoogle Scholar
  28. Class H, Ebigbo A, Helmig R, Dahle HK, Nordbotten JK, Celia MA, Audigane P, Darcis M, Ennis-King J, Fan Y, Flemisch B, Gasda SE, Jin M, Krug S, Labregere D, Beni AM, Pawar RJ, Sbai A, Thomas SG, Trenty L, Wei L (2009) A benchmark study on problems related to CO2 storage in geologic formations. Comput Geosci 13(4):409–434Google Scholar
  29. Computer Modelling Group Ltd (2006) GEM User Guide, 2006.
  30. Darcis M, Class H, Flemisch B, Helmig R (2011) Sequential model coupling for feasibility studies of CO2 storage in deep saline aquifers. Oil Gas Sci Technol Revue de l’IFP 66(1):93–103CrossRefGoogle Scholar
  31. De Lucia M, Albrecht D, Bauer S, Beyer C, Kuehn M, Nowak T, Pudlo D, Stadler S (2012) Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas Reservoir. Part I-from experimental data to a reference geochemical model. Environ Earth Sci (this issue)Google Scholar
  32. Dethlefsen F, Benisch K, Bauer S, Ebert M, Dahmke A (2012) A geological database as planning basis for the underground land use. Sedimentology (in prep.)Google Scholar
  33. Dethlefsen F, Dörr C, Ebert M (2011) The relevance and the determination of mineral dissolution kinetics in high pressure experiments and their use in numerical models. General Assembly of the Geosciences Union, April 3–8, 2011, ViennaGoogle Scholar
  34. Dethlefsen F, Haase C, Ebert M, Dahmke A (2012b) Uncertainties of geochemical modeling during CO2 sequestration applying batch equilibrium calculations. Environ Earth Sci 65(4):1105–1117. doi: 10.1007/s12665-011-1360-x CrossRefGoogle Scholar
  35. Duan Z, Li D (2008) Coupled phase and aqueous species equilibrium of the H2O–CO2–NaCl–CaCO3 system from 0 to 250°C, 1 to 1000 bar with NaCl concentrations up to saturation of halite. Geochim Cosmochim Acta 72:5128–5145CrossRefGoogle Scholar
  36. Eriksson G, Petersen S (2008) ChemApp—the thermochemistry library for your software. Programmer’s manual edition 3.12. GTT-Technologies, Herzogenrath, Germany, 1996–2008Google Scholar
  37. Fahrner S, Schäfer D, Dethlefsen F, Dahmke A (2011) Reactive transport modelling to assess geochemical monitoring for detection of CO2 intrusion into shallow aquifers. Energy Procedia 4:3155–3162CrossRefGoogle Scholar
  38. Fahrner S, Schäfer D, Dethlefsen F, Dahmke A (2012a) Reactive modelling of CO2 intrusion into freshwater aquifers: current requirements, approaches and limitations to account for temperature and pressure effects. Environ Earth Sci (in press). doi: 10.1007/s12665-011-1361-9
  39. Fahrner S, Schäfer D, Dahmke A (2012b) A monitoring strategy to detect CO2 intrusion in deeper freshwater aquifers. Int J Greenhouse Gas Control (in press)Google Scholar
  40. Fischedick M, Esken A, Luhmann H, Schüwer D, Supersberger N (2007) Geologische CO2-Speicherung als klimapolitische Handlungsoption—Technologien, Konzepte, Perspektiven. Wuppertal 2007, ISBN 978-3-929944-73-0 (Wuppertal Spezial Nr. 35)Google Scholar
  41. Flemisch B, Darcis M, Erbertseder K, Faigle B, Lauser A, Mosthaf K, Müthing S, Nuske P, Tatomir A, Wolff M, Helmig R (2011) DUMUX: DUNE for multi-{phase, component, scale, physics, …} flow and transport in porous media. Adv Water Resour. doi: 10.1016/j.advwaters.2011.03.007
  42. GeoWall (2010) Accessed 22 Jan 2010
  43. Görke U-J, Park C-H, Wang W, Singh AK, Kolditz O (2011) Numerical simulation of multiphase hydromechanical processes induced by CO2 injection in deep saline aquifers. Oil Gas Sci Technol 66(1):105–118CrossRefGoogle Scholar
  44. Graupner B, Li D, Bauer S (2011) The coupled simulator ECLIPSE—OpenGeoSys for the simulation of CO2 storage in saline formations. Energy Procedia 4:3794–3800CrossRefGoogle Scholar
  45. Graupner B, Li D, Bauer S (2010) Numerical investigation of long-term geomechanical and geochemical changes within a reservoir and the cap rock during CO2 storage. In: Carrera J (ed) Proceedings of the XVIII international conference in water resources CMWR 2010, Barcelona, SpainGoogle Scholar
  46. Haase C, Ebert M, Dethlefsen F, Dahmke A (2010) Uncertainties in hydrogeochemical modelling of water-mineral interaction in the field of CO2-Storage. Second EAGE CO2 Geological Storage Workshop, March 11–12, 2010, BerlinGoogle Scholar
  47. Hese F (2011) Geologische 3D-Modelle des Untergrundes Schleswig-Holsteins—ein Beitrag für Potenzialstudien zur Nutzung von tiefen salinen Aquiferen. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 162(4):389–404CrossRefGoogle Scholar
  48. Hese F, Liebsch-Dörschner T, Offermann P, Rheinländer J, Rosenbaum S, Thomsen C (2012) Geologische Modelle der Deck- und Speichergesteine Schleswig-Holstein. Schlussbericht des Teilvorhabens M6 im Rahmen des Verbundprojektes CO2-MoPa Modellierung und Parametrisierung von CO2-Speicherung in tiefen, salinen Speichergesteinen für Dimensionierungs- und Risikoanalysen; Vorhaben: Dimensionierung und Risikoanalysen bei der CO2-Speicherung - Sonderprogramm GEOTECHNOLOGIEN; 107 S., FlintbekGoogle Scholar
  49. IEA (2011) World energy outlook 2011. International energy agency, Vienna.
  50. Kahl WA, Holzheid A (2010) Estimated and “true” geometric surfaces and their possible impact on experimentally and thermodynamically derived mineral dissolution and precipitation rates in CO2-brine-mineral reactions. DMG Tagung, Münster 20.09.2010–22.09.2010, Abstract #256 (CD-ROM)Google Scholar
  51. Kiessling D, Schmidt-Hattenberger C, Schuett H, Schilling F, Krueger K, Schoebel B, Danckwardt E, Kummerow J, the CO2SINK Group (2010) Geoelectrical methods for monitoring geological CO2 storage: first results from crosshole and surface-downhole measurements from the CO2SINK test site at Ketzin (Germany). Int J Greenhouse Gas Control 4:816–826Google Scholar
  52. Knopf S, May F, Müller C, Gerling JP (2010) Neuberechnung möglicher Kapazitäten zur CO2-Speicherung in tiefen Aquifer-Strukturen. Energiewirtschaftliche Tagesfragen 60:76–80Google Scholar
  53. Kolditz O, Bauer S (2004) A process-oriented approach to computing multi-field problems in porous media. J Hydroinform 6(3):225–244Google Scholar
  54. Kolditz O, Bauer S, Bilke L, Böttcher N, Delfs J, Fischer T, Görke U, Kalbacher T, Kosakowski G, McDermott C, Park C, Radu F, Rink K, Shao H, Shao H, Sun F, Sun Y, Singh A, Taron J, Walther M, Wang W, Watanabe N, Wu Y, Xie M, Xu W, Zehner B (2012) OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci (this issue). doi: 10.1007/s12665-012-1546-x
  55. Kolditz O, Bauer S, Beyer C, Böttcher N, Dietrich P, Görke UJ, Kalbacher T, Park CH, Sauer U, Schütze C, Shao H, Singh A, Taron J, Wang W, Watanabe N (2012) A systematic benchmarking approach for geologic CO2 injection and storage. Environ Earth Sci (this issue). doi: 10.1007/s12665-012-1656-5
  56. Kühn M et al (2012) CLEAN: CO2 large-scale enhanced gas recovery in the Altmark natural gas field (Germany): Project overview. Environ Earth Sci (this issue)Google Scholar
  57. Lamert H, Geistlinger H, Werban U, Schütze C, Peter A, Hornbruch G, Schulz A, Pohlert M, Kalia S, Beyer M, Großmann J, Dahmke A, Dietrich P (2012) Feasibility of geoelectrical monitoring and multi-phase modeling for process understanding of gaseous CO2 injection into a shallow aquifer. Environ Earth Sci (this issue)Google Scholar
  58. Li D, Bauer S (2009) Development of a coupled transport and geochemical reaction code and a first application to CO2 sequestration. In: Proceedings TreProII, Karlsruhe, p 103Google Scholar
  59. Li D, Graupner B, Bauer S (2011) A method for calculating the liquid density for the CO2–H2O–NaCl system under CO2 storage condition. Energy Procedia 4:3817–3824CrossRefGoogle Scholar
  60. Loke MH, Acworth I, Dahlin T (2003) A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor Geophys 34:182–187CrossRefGoogle Scholar
  61. Lu C, Lichtner PC (2007) High resolution numerical investigation on the effect of convective instability on long term CO2 storage in saline aquifers. J Phys Conf Ser 78:012042. doi: 10.1088/1742-6596/78/1/012042 CrossRefGoogle Scholar
  62. Lüth S, Bergmann P, Cosma C, Enescu N, Giese R, Götz J, Ivanova A, Juhlin C, Kashubin A, Yang C, Zhang F (2011) Time-lapse seismic surface and down-hole measurements for monitoring CO2 storage in the CO2SINK project (Ketzin, Germany). Energy Procedia 4:3435–3442CrossRefGoogle Scholar
  63. Metz B, Davidson O, de Coninck H, Loos M, Meyer L (2005) Carbon dioxide capture and storage. IPCC Spec Rep, Cambridge University Press, CambridgeGoogle Scholar
  64. Mukhopadhyay S, Birkholzer JT, Nicot J-P, Hosseini SA (2012) A model comparison initiative for a CO2 injection field test: an introduction to sim-SEQ. Environ Earth Sci (this issue). doi: 10.1007/s12665-012-1668-1
  65. Müthing S, Bastian P (2011) Dune-multidomaingrid: a metagrid approach to subdomain modeling (to appear in Advances in Dune), SpringerGoogle Scholar
  66. Park C-H, Taron J, Görke U-J, Singh AK, Kolditz O (2011) The fluidal interface is where the action is in CO2 sequestration and storage: hydromechanical analysis on mechanical failure. Energy Procedia 4:3691–3698CrossRefGoogle Scholar
  67. Oldenborger GA, Routh PS, Knoll MD (2007) Model reliability for 3D electrical resistivity tomography: application of the volume of investigation index to a time-lapse monitoring experiment. Geophysics 72(4):167–175CrossRefGoogle Scholar
  68. Oldenburg DW, Li Y (1999) Estimating depth of investigation in DC resistivity and IP surveys. Geophysics 64:403–416CrossRefGoogle Scholar
  69. Palandri JL, Kharaka YK (2004) A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling, p 64. USGS, Menlo Park, CA, USAGoogle Scholar
  70. Park Y-C, Huh D-G, Park C-H (2012) A pressure monitoring method to warn CO2 leakage in geological storage sites. Environ Earth Sci (this issue). doi: 10.1007/s12665-012-1667-2
  71. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey, DenverGoogle Scholar
  72. Peter A, Lamert H, Beyer M, Hornbruch G, Heinrich B, Schulz A, Geistlinger H, Schreiber P, Dietrich P, Werban U, Vogt C, Richnow HH, Großmann J, Dahmke A (2012) Investigation of the geochemical impact of CO2 on shallow groundwater: design and implementation of a CO2 injection test in Northeast Germany. Environ Earth Sci (this issue). doi: 10.1007/s12665-012-1700-5
  73. Pruess K, Bielinski A, Ennis-King J, Fabriol R, Le Gallo Y, Garcia J, Jessen K, Kovscek T, Law DHS, Lichtner P, Oldenburg C, Pawar R, Rutqvist J, Steefel C, Travis B, Tsang CF, White S, Xu T (2003) Code intercomparison builds confidence in numerical models for geologic disposal of CO2. In: Gale J, Kaya Y (eds) GHGT-6 conference proceedings: greenhouse gas control technologies, pp 463–470, Kyoto, JapanGoogle Scholar
  74. Pruess K (2004) The tough codes—a family of simulation tools for multiphase flow and transport processes in permeable media. Vadose Zone J 3(3):738–746Google Scholar
  75. Rein A, Bauer S, Dietrich P, Beyer C (2009) Influence of temporally variable groundwater flow conditions on point measurements and contaminant mass flux estimations. J Contam Hydrol 108(3–4):118–133CrossRefGoogle Scholar
  76. Rodosta TR, Litynski JT, Plasynski SI, Hickman S, Frailey S, Myer L (2011) U.S. Department of energy’s: site screening, site selection, and initial characterization for storage of CO2 in deep geological formations. Energy Procedia 4:4664–4671CrossRefGoogle Scholar
  77. Ringrose P, Atbi M, Mason D, Espinassous M, Myhrer Ø, Iding M, Mathieson A, Wright I (2009) Plume development around well KB-502 at the In Salah CO2 storage site. First Break 27(1):85–89Google Scholar
  78. Schäfer D, Schlenz B, Dahmke A (2004) Evaluation of exploration and monitoring methods for verification of natural attenuation using the virtual aquifer approach. Biodegrad J 15(6):453–465CrossRefGoogle Scholar
  79. Schäfer F, Walter L, Class H, Müller C (2011) The regional pressure impact of CO2 storage: a showcase study from the North German Basin. Environ Earth Sci 65(7):2037–2049. doi: 10.1007/s12665-011-1184-8 CrossRefGoogle Scholar
  80. Schmidt S, Götze HJ, Fichler Ch, Alvers M (2010) IGMAS+: a new 3D gravity, FTG and magnetic modelling software. Extended abstract. In: Zipf A, Behncke K, Hillen F, Schaefermeyer J (eds) Geoinformatik 2010 ‘Die Welt im Netz’, Konferenzband, 17.-19. März, Kiel, Akad. Verlagsgesellschaft (AKA), Heidelberg, pp 57–63, ISBN 978-3-89838-335-6 Schlumberger. Eclipse Technical Description 2010.1, 2010Google Scholar
  81. Schütze C, Sauer U, Beyer K, Lamert H, Strauch G, Braeuer K, Flechsig C, Kaempf H, Dietrich P (2012) Natural analogues—a potential approach for developing reliable monitoring methods to understand subsurface CO2 migration processes. Environ Earth Sci (this issue). doi: 10.1007/s12665-012-1701-4
  82. Smith T, Hoversten M, Gasperikova E, Morrison F (1999) Sharp boundary inversion of 2D magnetotelluric data. Geophys Prospect 47:469–486CrossRefGoogle Scholar
  83. Steuer A, Siemon B, Auken E (2009) A comparison of helicopter-borne electromagnetics in frequency- and time-domain at the Cuxhaven valley in Northern Germany. J Appl Geophys 67:194–205CrossRefGoogle Scholar
  84. Strahser M, al Hagrey SA, Rabbel W (2010) CO2-migration in saline formation—first results of geoelectric and seismic numeric modeling. In: Mitteilungen, Deutsche Geophysikalische Gesellschaft (DGG), 2/2010, pp 4–14 (in German)Google Scholar
  85. Taron J, Park C-H, Görke, U-J, Wang W, Kolditz O (2011) Numerical analysis of CO2 injection into deformable saline reservoirs. In: Conference proceedings IVth international conference on computational methods for coupled problems in science and engineering, Kos Island, GreeceGoogle Scholar
  86. Tenzer H, Park CH, Kolditz O, McDermott CI (2010) Application of the geomechanical facies approach and comparison of exploration and evaluation methods used at Soultz-sous-Forts (France) and Spa Urach (Germany) geothermal sites. Environ Earth Sci 61(4):853–880. doi: 10.1007/s12665-009-0403-z CrossRefGoogle Scholar
  87. Thomsen A, Schmidt S, Götze HJ, Breunig M, Schilberg B, Kuper P (2010) On the way to synoptic interpretation of geoscientific data in joint CCS project CO2-MoPa. Extended Abstract. In: Zipf A, Behncke K, Hillen F, Schaefermeyer J (eds) Geoinformatik 2010 ‘Die Welt im Netz’, Konferenzband, 17.-19. März, Kiel, Akad. Verlagsgesellschaft (AKA), Heidelberg, pp 57–63, ISBN 978-3-89838-335-6Google Scholar
  88. US Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory (2008) Carbon sequestration atlas of the United States and Canada, 2nd edn. US Department of Energy, National Energy Technology Laboratory, Morgantown, West VirginiaGoogle Scholar
  89. Wang S, Jaffe PR (2004) Dissolution of a mineral phase in potable aquifers due to CO2 releases from deep formations; effect of dissolution kinetics. Energy Convers Manag 45(18–19):2833–2848CrossRefGoogle Scholar
  90. Wang W, Kosakowski G, Kolditz O (2009) A parallel finite element scheme for thermo-hydro-mechanical (THM) coupled problems in porous media. Comput Geosci 35(8):1631–1641CrossRefGoogle Scholar
  91. Wang W, Rutqvist J, Gorke U-J, Birkholzer JT, Kolditz O (2011) Non-isothermal flow in low permeable porous media: a comparison of unsaturated and two-phase flow approaches. Environ Earth Sci 62(6):1197–1207. doi: 10.1007/s12665-010-0608-1 CrossRefGoogle Scholar
  92. Würdemann H, Möller F, Kühn M, Heidug W, Christensen NP, Borm G, Schilling FR (2010) CO2SINK—from site characterisation and risk assessment to monitoring and verification: one year of operational experience with the field laboratory for CO2 storage at Ketzin, Germany. Int J Greenhouse Gas Control 4(6):938–951CrossRefGoogle Scholar
  93. White DJ, Burrowes G, Davis T, Hajnal Z, Hirsche K, Hutcheon I, Majer E, Rostron B, Whittaker S (2004) Greenhouse gas sequestration in abandoned oil reservoirs: the international energy agency Weyburn pilot project. GSA Today 14:4–10CrossRefGoogle Scholar
  94. Xie M, Bauer S, Kolditz O, Nowak T, Shao H (2006) Numerical simulation of reactive processes in an experiment with partially saturated bentonite. J Contam Hydrol 83(1–2):122–147. doi: 10.1016/j.jconhyd.2005.11.003 CrossRefGoogle Scholar
  95. Xu T, Sonnenthal E, Spycher N, Pruess K (2006) TOUGHREACT-A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestration. Comput Geosci 32(2):145–165Google Scholar
  96. Xue Z, Kim J, Mito S, Kitamura K, Matsuoka T (2009) Detecting and monitoring CO2 with P-wave velocity and resistivity from both laboratory and field scales, p 6. Society of petroleum engineers, SPE 126885. doi: 10.2118/126885-MS
  97. Zhou Q, Birkholzer JT, Tsang CF, Rutqvist J (2008) A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations. Int J Greenhouse Gas Control 2(4):626–639CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • S. Bauer
    • 1
    Email author
  • H. Class
    • 2
  • M. Ebert
    • 1
  • V. Feeser
    • 1
  • H. Götze
    • 1
  • A. Holzheid
    • 1
  • O. Kolditz
    • 3
    • 4
  • Sabine Rosenbaum
    • 5
  • W. Rabbel
    • 1
  • D. Schäfer
    • 1
  • A. Dahmke
    • 1
  1. 1.Institute of GeosciencesUniversity of KielKielGermany
  2. 2.Institute for Modelling Hydraulic and Environmental SystemsUniversity of StuttgartStuttgartGermany
  3. 3.Department of Environmental InformaticsHelmholtz Centre for Environmental Research-UFZLeipzigGermany
  4. 4.Applied Environmental System AnalysisTechnical University DresdenDresdenGermany
  5. 5.Geological Survey Schleswig-HolsteinState Agency for Agriculture, Environment and Rural AreasFlintbekGermany

Personalised recommendations