Environmental Earth Sciences

, Volume 67, Issue 2, pp 385–394 | Cite as

Chemical changes in fluid composition due to CO2 injection in the Altmark gas field: preliminary results from batch experiments

  • Farhana HuqEmail author
  • Philipp Blum
  • Michael A. W. Marks
  • Marcus Nowak
  • Stefan B. Haderlein
  • Peter Grathwohl
Special Issue


Dissolution–precipitation phenomena induced by CO2 injection to Altmark Permian sandstone were observed through laboratory experiments carried out under simulated reservoir conditions (125 °C and 50 bars of pressure). The rock sample was collected from the Altmark gas reservoir, which is being considered for enhanced gas recovery. Two sets of experiments were performed with pulverized rock samples in a closed batch reactor with either pure water (run 1) or 3 M aqueous NaCl solution (run 2) and reacted with injected CO2 for 3, 5, and 9 days. The liquid samples were analyzed by inductively coupled plasma optical emission spectroscopy and total reflection X-ray fluorescence, where the latter proved to be a feasible alternative to conventional analytical techniques, especially since only small sample volumes (about 10 μl) are needed. Chemical analysis for both fluids (water and NaCl brine) indicated a significant dissolution of calcite and anhydrite in the solution, which might be a crucial process during CO2 injection. The brine solution enhanced the dissolution of calcite and anhydrite compared to pure water at the beginning of the reaction. Moreover, the progressive higher Si4+/Al3+ molar ratios (in average by a factor of 3) in the brine experiments indicated quartz dissolution. Thermodynamic calculations of mineral saturation indices highlighted the dissolution of the Ca-bearing minerals, which was in agreement with experimental results. Modeling enabled an evaluation of the dissolution processes of minerals in a low-salinity region, yet hindrances to model more saline conditions emphasize the need for further laboratory studies in order to parameterize models for deep aquifer conditions.


Batch experiment CO2 injection Altmark Permian sandstone Mineral saturation index Enhanced gas recovery 
























This study was funded by BMBF (Federal Ministry of Education and Research) through the research group BA-5389 “CO2 Large Scale Enhanced Gas Recovery in the Altmark Natural Gas Field (CLEAN)” within the framework of the geoscientific research and development program “GEOTECHNOLOGIEN” (Publication number-1960). The authors would like to thank GDF SUEZ E&P DEUTSCHLAND GmbH for the samples. Sara Ladenburger, Thomas Wendel, and Sabine Flaiz are thanked for their assistances, respectively, in the TXRF, hydrogeochemistry, and ICP-OES laboratory at the University of Tübingen. Dr. Heinrich Taubald is specially thanked for his contribution in XRF measurement. We also thank Barbara Beckingham and two anonymous reviewers for their helpful suggestions.


  1. Bachu S (2003) Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environ Geol 44:277–289Google Scholar
  2. Bachu S, Adams JJ (2003) Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution. Energy Convers Manag 44:3151–3175CrossRefGoogle Scholar
  3. Bateman K, Turner G, Pearce JM, Noy DJ, Birchall D, Rochelle CA (2005) Large-scale column experiment: study of CO2, pore water, rock reactions and model test case. Oil Gas Sci Technol 60:161–175CrossRefGoogle Scholar
  4. Bertier P, Swennen R, Laenen B, Lagrou D, Dreesen R (2006) Evaluation of the CO2-sequestration capacity of sandstone aquifers in the Campine Basin (NE-Belgium) based on autoclave experiments and numerical modeling. J Geochem Explor 89:10–14CrossRefGoogle Scholar
  5. Cooper C (2009) A technical basis for carbon dioxide storage. Energy Procedia 1:1727–1733CrossRefGoogle Scholar
  6. Czernichowski-Lauriol I, Rochelle C, Gaus I, Azaroual M, Pearce J, Durst P (2006) Geochemical interactions between CO2, pore- waters and reservoir rocks. Advances in the geological storage of carbon dioxide NATO Science Series: IV: Earth and Environmental Sciences, vol. 65, Part III, 157–174Google Scholar
  7. Dethlefsen F, Haase C, Ebert M, Dahmke A (2012) Uncertainties of geochemical modeling during CO2 sequestration applying batch equilibrium calculations. Environ Earth Sci 65(4):1105–1117Google Scholar
  8. DIN (2009) Wasserbeschaffenheit–Bestimmung von ausgewählten Elementen durch induktiv gekoppelte Plasma-Atom-Emissionsspektrometrie (ICP-OES) (ISO 11885:2007); Deutsche Fassung EN ISO 11885Google Scholar
  9. Dove P (1994) The dissolution of quartz in sodium chloride solutions at 25 to 300 °C. Am J Sci 294:665–712CrossRefGoogle Scholar
  10. Dove PM, Crerar DA (1990) Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor. Geochim Cosmochim Acta 54:955–969CrossRefGoogle Scholar
  11. Duan Z, Sun R (2003) An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem Geol 193:257–271CrossRefGoogle Scholar
  12. Duan Z, Sun R, Zhu C, Chao I (2006) An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl, and SO4 2−. Mar Chem 98:131–139CrossRefGoogle Scholar
  13. Friedmann SJ (2007) Geological carbon dioxide sequestration. Elements 3:179–184CrossRefGoogle Scholar
  14. García-Heras M, Fernández-Ruiz R, Tornero JD (1997) Analysis of archaeological ceramics by TXRF and contrasted with NAA. J Archaeol Sci 24:10003–11014CrossRefGoogle Scholar
  15. Gaus I, Azaroual M, Czernichowski-Lauriol I (2005) Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea). Chem Geol 217:319–337CrossRefGoogle Scholar
  16. Gibbins J, Chalmers H (2008) Carbon capture and storage. Energy Policy 36:4317–4322CrossRefGoogle Scholar
  17. Gilfillan SMV, Lollar BS, Holland G, Blagburn D, Stevens S, Schoell M, Cassidy M, Ding Z, Lacrampe-Couloume G, Ballentine CJ (2009) Solubility trapping in formation water as dominant CO2 sink in natural gas fields. Nature 458:614–618CrossRefGoogle Scholar
  18. Gunter WD, Wiwchar B, Perkins EH (1997) Aquifer disposal of CO2-rich greenhouse gases: extension of the time scale of experiment for CO2-sequestering reactions by geochemical modeling. Mineral Petrol 59(1–2):121–140CrossRefGoogle Scholar
  19. Hangx SJT, Spiers CJ (2009) Reaction of plagioclase feldspars with CO2 under hydrothermal conditions. Chem Geol 265:88–98CrossRefGoogle Scholar
  20. Hellevang H, Aagaard P, Oelkers EH, Kvamme B (2005) Can Dawsonite permanently trap CO2? Environ Sci Technol 39:8281–8287CrossRefGoogle Scholar
  21. Holloway S (2005) Underground sequestration of carbon dioxide—a viable greenhouse gas mitigation option. Energy 30:2318–2333CrossRefGoogle Scholar
  22. IPCC (2005) IPCC special report on carbon dioxide capture and storage, prepared by working group III of the Intergovernmental Panel on Climate Change. In: Metz B, Davidson O, de Coninck HC, Loos M, Meyer LA (eds) Cambridge University Press, Cambridge 442 pp.
  23. Jacquemet N, Pironon J, Caroli E (2005) A new experimental procedure for simulation of H2S + CO2 geological storage. Oil Gas Sci Technol 60(1):193–206CrossRefGoogle Scholar
  24. Ketzer JM, Iglesias R, Einloft S, Dullius J, Ligabue R, de Lima V (2009) Water–rock–CO2 interactions in saline aquifers aimed for carbon dioxide storage: experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazil. Appl Geochem 24:760–767CrossRefGoogle Scholar
  25. Kharaka YK, Hanor JS (2007) Deep fluids in the continents: 1. Sedimentary basins. In: Drever JI (ed) Surface and ground water, weathering and soils, treatise on geochemistry, vol 5, pp 1–48Google Scholar
  26. Klockenkämper R (1996) Total-reflection X-ray fluorescence analysis. John Wiley & Sons, New York, 245 ppGoogle Scholar
  27. Knauss KG, Wolery TJ (1988) The dissolution kinetics of quartz as a function of pH and time at 70 °C. Geochim Cosmochim Acta 52:43–53CrossRefGoogle Scholar
  28. Kühn M, Förster A, Großmann J, Meyer R, Reinicke K, Schäfer D, Wendel H (2011) CLEAN: preparing for a CO2-based enhanced gas recovery in a depleted gas field in Germany. Energy Procedia 4:5520–5526. doi: 10.1016/j.egypro.2011.02.538 CrossRefGoogle Scholar
  29. Kühn M, Tesmer M, Pilz P, Meyer R, Reinicke K, Förster A, Kolditz O, Schäfer D, CLEAN Partners (2012) CLEAN: CO2 large-scale enhanced gas recovery in the Altmark Natural Gas Field (Germany): project overview. Environ Earth Sci (submitted)Google Scholar
  30. Lu J, Kharaka YK, Thordsen JJ, Horita J, Karamalidis A, Griffith C, Hakala JA, Ambats G, Cole DR, Phelps TJ, Manning MA, Cook PJ, Hovorka SD (2012) CO2–rock–brine interactions in Lower Tuscaloosa formation at Cranfield CO2 sequestration site, Mississippi, USA. Chem Geol 291:269–277CrossRefGoogle Scholar
  31. Lüders V, Plessen B, Romer RL, Weise SM, Banks DA, Hoth P, Dulski P, Schettler G (2010) Chemistry and isotopic composition of Rotliegend and Upper Carboniferous formation waters from the North German Basin. Chem Geol 276:198–208CrossRefGoogle Scholar
  32. Marks MAW, Wenzel T, Whitehouse MJ, Loose M, Zack T, Barth M, Worgard L, Krasz V, Eby GN, Stosnach H, Markl G (2012) The volatile inventory (F, Cl, Br, S, C) of magmatic apatite: an integrated analytical approach. Chem Geol 291:241–255CrossRefGoogle Scholar
  33. Misra NL, Mudher KDS (2002) Total reflection X-ray fluorescence: a technique for trace element analysis in materials. Prog Cryst Growth Charact Mater 45:65–74CrossRefGoogle Scholar
  34. Mito S, Xue Z, Ohsumi T (2008) Case study of geochemical reactions at the Nagaoka CO2 injection site, Japan. Int J Greenhouse Gas Control 2:309–318CrossRefGoogle Scholar
  35. Oelkers EH, Schott J (2005) Geochemical aspects of CO2 sequestration. Chem Geol 217(3–4):183–186CrossRefGoogle Scholar
  36. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2)—a computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculations. United States Geological Survey, Water-Resources Investigations Report, 99-4259Google Scholar
  37. Pauwels H, Gaus I, Le Nindre YM, Pearce J, Czernichowski-Lauriol I (2007) Chemistry of fluids from a natural analogue for a geological CO2 storage site (Montmiral, France): lessons for CO2-water-rock interaction assessment and monitoring. Appl Geochem 22:2817–2833CrossRefGoogle Scholar
  38. Pearce JM, Holloway S, Wacker H, Nelis MK, Rochelle C, Bateman K (1996) Natural occurrences as analogues for the geological disposal of carbon dioxide. Energy Convers Manage 37(6–8):1123–1128CrossRefGoogle Scholar
  39. Portier S, Rochelle C (2005) Modeling CO2 solubility in pure water and NaCl-type waters from 0 to 300 degrees C and from 1 to 300 bars—application to the Utsira formation at Sleipner. Chem Geol 217(3–4):187–199CrossRefGoogle Scholar
  40. Pudlo D, Reitenbach V, Albrecht D, Ganzer L, Gernert U, Wienand J, Kohlhepp B, Gaupp R (2012) The impact of diagenetic fluidrock reactions on Rotliegend sandstone composition and petrophysical properties (Altmark area, central Germany). Environ Earth Sci (submitted)Google Scholar
  41. Rimstidt JD, Barnes HL (1980) The kinetics of silica–water reaction. Geochim Cosmochim Acta 44:1683–1699CrossRefGoogle Scholar
  42. Sass BM, Gupta N, Ickes JA, Engelhard MH, Baer DR, Bergman P, Byrer C (2002) Interaction of rock minerals with carbon dioxide and brine: a hydrothermal investigation. J Energy Environ Res 2(1):23–31Google Scholar
  43. Shao H, Ray JR, Jun YS (2011) Effects of salinity and the extent of water on supercritical CO2 induced phlogopite dissolution and secondary mineral formation. Environ Sci Technol 45:1737–1743CrossRefGoogle Scholar
  44. Shiraki R, Dunn TL (2000) Experimental study on water-rock interactions during CO2 flooding in the Tensleep formation, Wyoming, USA. Appl Geochem 15:265–279CrossRefGoogle Scholar
  45. Ueda A, Kato K, Ohsumi T, Yajima T, Ito H, Kaieda H, Metcalfe R, Takase H (2005) Experimental studies of CO2–rock interaction at elevated temperatures under hydrothermal conditions. Geochem J 39:417–425CrossRefGoogle Scholar
  46. Wigand M, Carey JW, Schuett H, Spangenberg E, Erzinger J (2008) Geochemical effects of CO2 sequestration in sandstones under simulated in situ conditions of deep saline aquifers. Appl Geochem 23:2735–2745CrossRefGoogle Scholar
  47. Xu T, Apps JA, Pruess K (2005) Mineral sequestration of carbon dioxide in a sandstone- shale system. Chem Geol 217:295–318CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Farhana Huq
    • 1
    Email author
  • Philipp Blum
    • 2
  • Michael A. W. Marks
    • 3
  • Marcus Nowak
    • 3
  • Stefan B. Haderlein
    • 1
  • Peter Grathwohl
    • 1
  1. 1.Center for Applied GeosciencesUniversity of TuebingenTübingenGermany
  2. 2.Institute for Applied GeosciencesKarlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Department of GeosciencesUniversity of TuebingenTübingenGermany

Personalised recommendations