Environmental Earth Sciences

, Volume 67, Issue 2, pp 573–588 | Cite as

Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas reservoir. Part II: coupled reactive transport simulation

  • Christof Beyer
  • Dedong Li
  • Marco De Lucia
  • Michael Kühn
  • Sebastian Bauer
Special Issue

Abstract

Injection of CO2 into gas reservoirs for CO2-enhanced gas recovery will initiate a series of geochemical reactions between pore fluids and solid phases. To simulate these conditions, the coupled multiphase flow and multicomponent reactive transport simulator OpenGeoSys-ChemApp was extended to take into account the kinetic nature of fluid/mineral reactions. The coupled simulator is verified successfully for the correctness and accuracy of the implemented kinetic reactions using benchmark simulations. Based on a representative geochemical model developed for the Altensalzwedel compartment of the Altmark gas field in northeastern Germany (De Lucia et al. this issue), the code is applied to study reactive transport following an injection of CO2, including dissolution and precipitation kinetics of mineral reactions and the resulting porosity changes. Results from batch simulations show that injection-induced kinetic reactions proceed for more than 10,000 years. Relevant reactions predicted by the model comprise the dissolution of illite, precipitation of secondary clays, kaolinite and montmorillonite, and the mineral trapping of CO2 as calcite, which starts precipitating in notable quantities after approximately 2,000 years. At earlier times, the model predicts only small changes in the mineral composition and aqueous component concentrations. Monitoring by brine sampling during the injection or early post-injection period therefore would probably not be indicative of the geochemical trapping mechanisms. One-dimensional simulations of CO2 diffusing into stagnant brine show only a small influence of the transport of dissolved components at early times. Therefore, in the long term, the system can be approximated reasonably well by kinetic batch modelling.

Keywords

Enhanced gas recovery Altmark gas field CO2 storage Mineral dissolution/precipitation kinetics Numerical modelling 

References

  1. Audigane P, Gaus I, Czernichowski-Lauriol I, Pruess K, Xu T (2007) Two-dimensional reactive transport modeling of CO2 injection in a saline aquifer at the Sleipner site, North Sea. Am J Sci 307:974–1008CrossRefGoogle Scholar
  2. Bachu S, Gunter WE, Perkins EH (1994) Aquifer disposal of CO2: Hydrodynamic and mineral trapping. Energy Convers Manag 35:69–279CrossRefGoogle Scholar
  3. Bauer S, Beyer C, Kolditz O (2006) Assessing measurement uncertainty of first-order degradation rates in heterogeneous aquifers. Water Resour Res 42:W01420. doi:10.1029/2004WR003878 CrossRefGoogle Scholar
  4. Bear J, Bachmat Y (1990) Introduction to modeling of transport phenomena in porous media. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  5. Beyer C, Bauer S, Kolditz O (2006) Uncertainty assessment of contaminant plume length estimates in heterogeneous aquifers. J Contam Hydrol 87:73–95CrossRefGoogle Scholar
  6. Beyer C, Konrad W, Rügner H, Bauer S, Liedl R, Grathwohl P (2009) Model based prediction of long-term leaching of contaminants from secondary materials in road constructions and noise protection dams. Waste Manag 29:839–850CrossRefGoogle Scholar
  7. Böttcher N, Singh AK, Kolditz O, Liedl R (2011) Non-isothermal, compressible gas flow for the simulation of an enhanced gas recovery application. J Comput Appl Math (published online). doi:10.1016/j.cam.2011.11.013 Google Scholar
  8. Brantley S, Kubicki J, White AF (2008) Kinetics of water–rock interaction. Springer, New YorkCrossRefGoogle Scholar
  9. Cash JR, Karp AH (1990) A variable order Runge–Kutta method for initial value problems with rapidly varying right-hand sides. ACM Transact Math Softw 16:201–222CrossRefGoogle Scholar
  10. De Lucia M, Bauer S, Beyer C, Kühn M, Nowak T, Pudlo D, Reitenbach V, Stadler S. Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas reservoir. Part I: from experimental data to a reference geochemical model. Environ Earth Sci (this issue)Google Scholar
  11. Dethlefsen F, Haase C, Ebert M, Dahmke A (2012) Uncertainties of geochemical modeling during CO2 sequestration applying batch equilibrium calculations. Environ Earth Sci 65:1105–1117CrossRefGoogle Scholar
  12. Duan Z, Sun R (2003) An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem Geol 193:253–271CrossRefGoogle Scholar
  13. Engesgaard P, Kipp KL (1992) A geochemical transport model for redox-controlled movement of mineral fronts in groundwater flow systems: a case of nitrate removal by oxidation of pyrite. Water Resour Res 28:2829–2843. doi:10.1029/92WR01264 CrossRefGoogle Scholar
  14. Fredd CN, Fogler HS (1998) Influence of transport and reaction on wormhole formation in porous media. AIChE J 44:1933–1949CrossRefGoogle Scholar
  15. Graupner B, Li D, Bauer S (2011) The coupled simulator ECLIPSE–OpenGeoSys for the simulation of CO2 storage in saline formations. Energy Procedia 4:3794–3800CrossRefGoogle Scholar
  16. Köhler SJ, Dufaud F, Oelkers EO (2003) An experimental study of illite dissolution kinetics as a function of pH from 1.4 to 12.4 and temperature from 5 to 50 °C. Geochim Cosmochim Acta 67:3583–3594CrossRefGoogle Scholar
  17. Kolditz O, Bauer S (2004) A process-oriented approach to computing multi-field problems in porous media. J Hydroinformatics 6:225–244Google Scholar
  18. Kolditz O, Shao H (2009) Developer Benchmark Book on THMC Components of Numerical Codes GeoSys/Rockflow V. 4.9. Helmholtz Centre for Environmental Research (UFZ), LeipzigGoogle Scholar
  19. Kolditz O, Bauer S, Bilke L, Böttcher N, Delfs JO, Fischer T, Görke UJ, Kalbacher T, Kosakowski G, McDermott CI et al (2012) OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci (published online). doi:10.1007/s12665-012-1546-x
  20. Kolditz O, Bauer S, Beyer C, Böttcher N, Dietrich P, Görke UJ, Kalbacher T, Park CH, Sauer U, Schütze C, Singh A, Taron J, Wang W, Watanabe N. Technical paper: a systematic for CO2 benchmarking. Environ Earth Sci (this issue). doi:10.1007/s12665-012-1656-5
  21. Kühn M, Förster A, Großmann J, Meyer R, Reinick K, Schäfer D, Wendel H (2011) CLEAN: preparing for a CO2-based enhanced gas recovery in a depleted gas field in Germany. Energy Procedia 4:5520–5526CrossRefGoogle Scholar
  22. Kühn M, et al. CLEAN: CO2 large-scale enhanced gas recovery in the Altmark natural gas field (Germany): project overview. Environ Earth Sci (this issue)Google Scholar
  23. Lagneau V, van der Lee J (2010) Operator-splitting-based reactive transport models in strong feedback of porosity change: The contribution of analytical solutions for accuracy validation and estimator improvement. J Contam Hydrol 112:118–129CrossRefGoogle Scholar
  24. Lasaga AC (1995) Fundamental approaches in describing mineral dissolution and precipitation rates. In: White AF, Brantley SL (eds) Chemical weathering rates of silicates minerals—reviews in mineralogy, vol 31. BookCrafters, ChelseaGoogle Scholar
  25. Lasaga AC, Soler JM, Ganor J, Burch TE, Nagy KL (1994) Chemical weathering rate laws and global geochemical cycles. Geochim Cosmochim Acta 58:2361–2386CrossRefGoogle Scholar
  26. Li D, Bauer S (2009) Development of a coupled transport and geochemical reaction code and a first application to CO2 sequestration. In: Huber F, Lützenkirchen J, Pfingsten W, Tiffreau C (eds) Proceedings of the Workshop TRePro II. 18.-19.5.2009, Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, Wissenschaftliche Berichte FZKA 7482Google Scholar
  27. Li D, Graupner B, Bauer S (2011) A method for calculating the liquid density for the CO2–H2O–NaCl system under CO2 storage condition. Energy Procedia 4:3817–3824CrossRefGoogle Scholar
  28. Moog HC, Mönig H (2010) Erstellung von Parameterdateien für die Verwendung mit CHEMAPP und PHREEQC. Final Report to BGR project 45-4500046190, GRS, BraunschweigGoogle Scholar
  29. Palandri JL, Kharaka YK (2004) A compilation of rate parameters of water–mineral interaction kinetics for application to geochemical modelling. US Geol Survey Water-Resources Investigations Report 04-1068Google Scholar
  30. Park CH, Beyer C, Bauer S, Kolditz O (2008) Using global node-based velocity in random walk particle tracking in variably saturated porous media: application to contaminant leaching from road constructions. Env Geol 55:1755–1766Google Scholar
  31. Petersen S, Hack K (2007) The thermochemistry library ChemApp and its applications. Int J Mat Res 98(10):935–945CrossRefGoogle Scholar
  32. Pudlo D, Reitenbach V, Albrecht D, Ganzer L, Ulrich G, Wienand J, Kohlhepp B, Gaupp R. The impact of diagenetic fluid–rock reactions on Rotliegend sandstone composition and petrophysical properties (Altmark area, central Germany). Environ Earth Sci (this issue)Google Scholar
  33. Rozalen M, Huertas FJ, Brady PV (2009) Experimental study of the effect of pH and temperature on the kinetics of montmorillonite dissolution. Geochim Cosmochim Acta 73:3752–3766CrossRefGoogle Scholar
  34. Shao HB, Dmytrieva SV, Kolditz O, Kulik DA, Pfingsten W, Kosakowski G (2009) Modeling reactive transport in non-ideal aqueous-solid solution system. Appl Geochem 24:1287–1300CrossRefGoogle Scholar
  35. Steefel CI, Lasaga AC (1994) A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. Am J Sci 294:529–592CrossRefGoogle Scholar
  36. Szymczak P, Ladd AJC (2011) Instabilities in the dissolution of a porous matrix. Geophys Res Lett 38:L07403. doi:10.1029/2011GL046720 CrossRefGoogle Scholar
  37. Wang W, Kolditz O (2007) Object-oriented finite element analysis of thermo-hydro-mechanical (THM) problems in porous media. Int J Numer Methods Eng 69:162–201CrossRefGoogle Scholar
  38. Xie M, Bauer S, Kolditz O, Nowak T, Shao H (2006) Non-isothermal multi-component reactive transport in partially saturated porous media: Application to bentonite. J Contam Hydrol 83:122–147CrossRefGoogle Scholar
  39. Xu T, Apps JA, Pruess K (2004) Numerical simulation of CO2 disposal by mineral trapping in deep aquifers. Appl Geochem 19:917–936CrossRefGoogle Scholar
  40. Xu T, Apps JA, Pruess K (2005) Mineral sequestration of carbon dioxide in a sandstone–shale system. Chem Geol 217:295–318CrossRefGoogle Scholar
  41. Xu T, Apps JA, Pruess K, Yamamoto H (2007) Numerical modeling of injection and mineral trapping of CO2 with H2S and SO2 in a sandstone formation. Chem Geol 242:319–346CrossRefGoogle Scholar
  42. Xu T, Kharaka YK, Doughty C, Freifeld BM, Daley TM (2010) Reactive transport modeling to study changes in water chemistry induced by CO2 injection at the Frio-I Brine Pilot. Chem Geol 271:153–164CrossRefGoogle Scholar
  43. Zerai B, Saylor BZ, Matisoff G (2006) Computer simulation of CO2 trapped through mineral precipitation in the Rose Run Sandstone, Ohio. Appl Geochem 21:223–240CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Christof Beyer
    • 1
  • Dedong Li
    • 1
  • Marco De Lucia
    • 2
  • Michael Kühn
    • 2
  • Sebastian Bauer
    • 1
  1. 1.Institute of Geosciences, GeohydromodellingCAU Christian Albrechts University of KielKielGermany
  2. 2.Helmholtz-Centre Potsdam, GFZ German Research Centre for GeosciencesPotsdamGermany

Personalised recommendations