Environmental Earth Sciences

, Volume 67, Issue 2, pp 613–632 | Cite as

A systematic benchmarking approach for geologic CO2 injection and storage

  • Olaf Kolditz
  • Sebastian Bauer
  • Christof Beyer
  • Norbert Böttcher
  • Peter Dietrich
  • Uwe-Jens Görke
  • Thomas Kalbacher
  • Chan-Hee Park
  • Uta Sauer
  • Claudia Schütze
  • Haibing Shao
  • Ashok Singh
  • Joshua Taron
  • Wenqing Wang
  • Norihiro Watanabe
Special Issue

Abstract

The idea of this paper is twofold. On one hand, we propose a general systematic for benchmarking of CO2 modelling. On the other hand, we integrate material from the CLEAN project into this framework to demonstrate its applicability (Kühn et al. in Environ Earth Sci, this issue 2011). Benchmarks are an important instrument to gain a better understanding of interacting physico-chemical processes and they are a necessary tool to verify the algorithms and the software dedicated to simulate the separated and differently coupled thermo-hydro-mechanical/chemical processes during injecting and storing CO2 in the subsurface. In general we distinguish between process- and site-related test cases. Process-related benchmarks deal with the required complexity of process coupling as well as equations of state for fluids and constitutive laws for geologic formations. Site-specific benchmarks represent different geological settings for potential CO2 reservoirs, e.g., depleted gas and oil reservoirs as well as deep saline aquifers. The data basis for benchmarking mainly comes from experimental work in the CLEAN project as well as from literature. The benchmarking systematic is aimed at serving as basis for process studies, experimental design as well as for code inter-comparison purposes not only for numerical tools having used by the CLEAN partners but also for upcoming international benchmarking initiatives as well.

Keywords

CLEAN CO2BENCH Benchmarking CO2 modelling OpenGeoSys Depleted gas reservoirs Deep saline aquifers Natural analogues 

References

  1. Bauer S, Beyer C, Kolditz O (2006) Assessing measurement uncertainty of first-order degradation rates in heterogeneous aquifers. Water Resour Res 42(1):W01420. doi:10.1029/2004WR003878
  2. Bauer S, Class H, Ebert M et al (2011) Modeling and parameterization of CO2 storage in deep saline formations for dimension and risk analyses: The CO2-MoPa project. Environ Earth Sci, this issueGoogle Scholar
  3. Beinhorn M, Dietrich P, Kolditz O (2005) 3-d numerical evaluation of density effects on tracer tests. J Contam Hydrol 81(1–4):89–105CrossRefGoogle Scholar
  4. Beyer C, Li D, de Lucia M, Kühn M, Bauer S (2011) Modelling CO2 induced fluid-rock interactions in the Altensalzwedel gas reservoir: part 2 coupled reactive transport simulation. Environ Earth Sci this issueGoogle Scholar
  5. Böttcher N, Taron J, Kolditz O, Park CH, Liedl R (2011) Evaluation of equations of state for CO2 in numerical simulations. Environ Earth Sci, this issueGoogle Scholar
  6. Centler F, Shao H, De Biase C, Park CH, Regnier P, Kolditz O, Thullner M (2010) GeoSysBRNS-A flexible multidimensional reactive transport model for simulating biogeochemical subsurface processes. Comput Geosci 36(3):397–405CrossRefGoogle Scholar
  7. Class H, Ebigbo A, Helmig R, Dahle H, Nordbotten J, Celia MPA, Darcis M, Ennis-King J, Fan Y, Flemisch B, Gasda S, Jin M, Krug S, Labregere D, Beni A, Pawar R, Sbai A, Thomas S, Trenty L, Wei L (2009) A benchmark study on problems related to CO2 storage in geologic formations: summary and discussion of the results. Comput Geosci 13(4):409–434CrossRefGoogle Scholar
  8. De Lucia M, Albrecht D, Bauer S, Beyer C, Kühn M, Nowak T, Pudlo D, Stadler S (2011) Modelling CO2 induced fluid-rock interactions in the Altensalzwedel gas reservoir: part 1 from experimental data to a reference geochemical model. Environ Earth Sci, this issueGoogle Scholar
  9. Duan Z, Sun R (2003) An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem Geology 193:253–271CrossRefGoogle Scholar
  10. Duan Z, Sun R, Zhu C, Chou I (2006) An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl, and SO42−. Marine Chem 98(2–4):131–139CrossRefGoogle Scholar
  11. Görke UJ, Park CH, Wang W, Singh A, Kolditz O (2011) Numerical simulation of multiphase hydro-mechanical processes induced by CO2 injection in deep saline aquifers. Oil Gas Sci Technol 66(1):105–118CrossRefGoogle Scholar
  12. Hou M, Gou Y, Taron J, Görke UJ, Kolditz O (2011) Thermo-hydro-mechanical modeling of CO2-EGR: results and code comparison. Environ Earth Sci, this issueGoogle Scholar
  13. Hou M, Wundram L, Meyer R, Schmidt M, Schmitz S, Were P (2012) Development of a long-term wellbore sealing concept based on numerical simulations and in-situ-testing in the Altmark natural gas field. Environ Earth Sci this issueGoogle Scholar
  14. Kalbacher T, Wang W, McDermott C, Kolditz O, Taniguchi T (2005) Development and application of a CAD interface for fractured rock. Environ Geol 47(7):1017–1027Google Scholar
  15. Kalbacher T, Delfs JO, Shao H et al (2011) The IWAS-ToolBox: software coupling for an integrated water resources management. Environ Earth Sci 65(5):1367–1380CrossRefGoogle Scholar
  16. Kolditz O (1995) Modelling flow and heat transfer in fractured rocks: conceptual model of a 3-d deterministic fracture network. Geothermics 24(3):451–470CrossRefGoogle Scholar
  17. Kolditz O, Diersch HJ (1993) Quasi-steady-state strategy for numerical simulation of geothermal circulation in hot dry rock fractures. Int J Non-Linear Mech 28(4):467–481CrossRefGoogle Scholar
  18. Kolditz O, Bauer S, Bilke L et al (2012a) OpenGeoSys: an open source initiative for numerical simulation of THMC processes in porous-fractured media. Environ Earth Sci. doi:10.1007/s12665-012-1546-x
  19. Kolditz O, Görke UJ, Shao H, Wang W (eds) (2012b) Thermo-hydro-mechanical-chemical processes in porous media: benchmarks and examples. Lecture Notes in Computational Science and Engineering, vol 86, Springer. doi:10.1007/978-3-642-27177-9
  20. Kühn, Görke U, Birkholzer J, Kolditz O (2011) CLEAN Thematic issue editorial. Environ Earth Sci, this issueGoogle Scholar
  21. Kunz H, Zhao HG, Nowak T, Shao H, Bräuer V (2006) A comprehensive solution for THMC-coupled processes in the field of nuclear waste disposal—application of the numerical tools GINA/ROCKFLOW to the Chinese Beishan site. In: Proc 2nd International Conference on Coupled T-H-M-C processes in geo-systems, GeoProc 2006, May 22–24, 2006, Nanjing, ChinaGoogle Scholar
  22. Lamert A, Geistlinger H, Werban U, Schütze C, Peter A, Hornbruch G, Pohlert M, Kalia S, Beyer M, Schulz A, Dahmke A, Dietrich P (2012) Geolelectrical monitoring and multi-phase modelling for process understanding of gaseous CO2 injection into a shallow aquifer. Environ Earth Sci, this issueGoogle Scholar
  23. Martens S, Kempka T, Liebscher A, Lüth S, Möller F, Myrttinen A, Norden B, Schmidt-Hattenberger C, Zimmer M, Kühn M (2011) Europe’s longest-operating on-shore CO2 storage site at Ketzin, Germany: A progress report after three years of injection. Environ Earth Sci, this issueGoogle Scholar
  24. McDermott C, Bond A, Wang W, Kolditz O (2011) Front tracking using a hybrid analytical finite element approach for two-phase flow applied to supercritical CO2 replacing brine in a heterogeneous reservoir and cap rock. Trans Porous Media 90(2):545–573CrossRefGoogle Scholar
  25. Mukhopadhyay S, Birkholzer J, Nicot JP, Hosseini S (2011) A Model Comparison Initiative for a CO2 injection field test: an Introduction to Sim-SEQ. Environ Earth Sci, this issueGoogle Scholar
  26. Mykkeltvedt T, Nordbotten J (2011) Representing convective mixing in coarse models: field case study. Environ Earth Sci, this issueGoogle Scholar
  27. Palandri J, Kharaka Y (2004) A compilation of rate parameters of water–mineral interaction kinetics for application to geochemical modeling: U.S. Geological Survey Water-Resources Investigations Report 04-1068. Tech. repGoogle Scholar
  28. Park CH, Boettcher N, Wang W, Kolditz O (2011a) Are upwind techniques in multi-phase flow models necessary? J Comp Physics 230(22):8304–8312. doi:10.1016/j.jcp.2011.07.030 CrossRefGoogle Scholar
  29. Park YC, Huh DG, Park CH (2011b) A pressure monitoring method to warn CO2 leakage in geological storage sites. Environ Earth Sci, this issueGoogle Scholar
  30. Peng D, Robinson D (1974) A new two-constant equation of state. Ind Eng Chem Fund 15:59–65CrossRefGoogle Scholar
  31. Peter A, Lamert H, Beyer M et al (2011) Investigation of the geochemical impact of CO2 on shallow groundwater: design and implementation of a CO2 injection test in Northeast Germany. Environ Earth Sci, this issueGoogle Scholar
  32. Petersen S, Hack K (2007) The thermochemistry library ChemApp and its applications. Int J Mat Res 98(10):935–945CrossRefGoogle Scholar
  33. Pruess K, García J (2002) Multiphase flow dynamics during CO2 injection into saline aquifers. Environ Geol 42:282–295Google Scholar
  34. Pruess K, García J, Kovscek T, Oldenburg C, Rutqvist J, Steefel C, Xu T (2004) Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2. Energy 29:1431–1444CrossRefGoogle Scholar
  35. Pudlo D, Reitenbach V, Albrecht D, Ganzer L, Gernert U, Wienand J, Kohlhepp B, Gaupp G (2012) The impact of diagenetic fluid-rock reactions on Rotliegend sandstone composition and petrophysical properties (Altmark area, central Germany). Environ Earth Sci, this issueGoogle Scholar
  36. Qiao X, Li G, McDermott C, Wu R, Haszeldine S (2010) An overview of CO2 geological storage in China. Environ Eng Manag J 9(7):889–897Google Scholar
  37. Redlich O, Kwong J (1949) On the thermodynamics of solutions. V. an equation of state: fugacities of gaseous solutions. Chem Rev 44(1):233–244CrossRefGoogle Scholar
  38. Rink K, Kalbacher T, Kolditz O (2012) Visual data management for hydrological analysis. Environ Earth Sci 65(5):1395–1403CrossRefGoogle Scholar
  39. Rutqvist J, Tsang CF (2002) A study of caprock hydromechanical changes associated with CO2 injection into a brine formation. Environ Geol 42:296–305Google Scholar
  40. Rutqvist J, Barr D, Birkholzer JT, Chijimatsu M, Kolditz O, Liu Q, Oda Y, Wang W, Zhang C (2008) Results from an international simulation study on coupled thermal, hydrological, and mechanical processes near geological nuclear waste repositories. J Nucl Technol 163(1):101–109Google Scholar
  41. Schütze C, Sauer U, Beyer B, Lamert H, Strauch G, Bräuer K, Flechsig C, Kämpf H, Dietrich P (2012) Natural analogues—a potential approach for developing reliable monitoring methods to understand subsurface migration processes. Environ Earth Sci, this issueGoogle Scholar
  42. Shao H, Dmytrieva S, Kolditz O, Kulik D, Pfingsten W, Kosakowski G (2009) Modeling reactive transport in non-ideal aqueous-solid solution system. Appl Geochem 24(7):1287–1300CrossRefGoogle Scholar
  43. Singh A, Baumann G, Hennings J, Görke UJ, Kolditz O (2011a) Thermal analysis of the Altmark gas field for carbon dioxide injection with enhanced gas recovery. Environ Earth Sci, this issueGoogle Scholar
  44. Singh A, Görke UJ, Kolditz O (2011b) Numerical simulation of non-isothermal compositional gas flow: application to carbon dioxide injection into gas reservoirs. Energy 36:3446–3458CrossRefGoogle Scholar
  45. Singh A, Pilz P, Zimmer M, Kalbacher T, Görke UJ, Kolditz O (2011c) Numerical simulation and geophysical monitoring of tracer transport in the Altmark gas field. Environ Earth Sci, this issueGoogle Scholar
  46. Span R, Wagner W (1996) A new equation of state for carbon dioxide covering the fluid region from triple point temperature to 1100 K and at pressure up to 800 MPa. J Phys Chem Ref Data 25(6):1509–1596CrossRefGoogle Scholar
  47. Sulis M, Meyerhoff S, Paniconi C, Maxwell R, Putti M, Kollet S (2010) A comparison of two physics-based numerical models for simulating surface water–groundwater interactions. Adv Water Resour 33(4):456–467CrossRefGoogle Scholar
  48. Tsang CF, Stephansson O, Jing L, Kautsky F (2009) DECOVALEX Project: from 1992 to 2007. Environ Geol 57(6):1221–1237Google Scholar
  49. Wang W, Rutqvist J, Görke U-J, Birkholzer JT, Kolditz O (2011) Non-isothermal flow in low permeable porous media: a comparison of Richards’ and two-phase flow approaches. Environ Earth Sci 62(6):1197–1207Google Scholar
  50. Watanabe N, Wang W, McDermott C, Taniguchi T, Kolditz O (2010) Uncertainty analysis of thermo-hydro-mechanical coupled processes in heterogeneous porous media. Comput Mech 45(4):263–280CrossRefGoogle Scholar
  51. Xie M, Agus S, Schanz T, Kolditz O (2004) An upscaling method and a numerical analysis of swelling/shrinking processes in a compacted bentonite/sand mixture. Int J Numer Anal Methods Geomech 28(15):1479–1502CrossRefGoogle Scholar
  52. Xie M, Bauer S, Kolditz O, Nowak T, Shao H (2006) Numerical simulation of reactive processes in an experiment with partially saturated bentonite. J Contam Hydrol 83(1–2):122–147CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Olaf Kolditz
    • 1
    • 2
  • Sebastian Bauer
    • 3
  • Christof Beyer
    • 3
  • Norbert Böttcher
    • 2
  • Peter Dietrich
    • 1
  • Uwe-Jens Görke
    • 1
  • Thomas Kalbacher
    • 1
  • Chan-Hee Park
    • 4
  • Uta Sauer
    • 1
  • Claudia Schütze
    • 1
  • Haibing Shao
    • 1
  • Ashok Singh
    • 1
  • Joshua Taron
    • 1
  • Wenqing Wang
    • 1
  • Norihiro Watanabe
    • 1
  1. 1.Helmholtz Centre for Environmental Research–UFZLeipzigGermany
  2. 2.Technische Universität DresdenDresdenGermany
  3. 3.Christian-Albrechts Universität KielKielGermany
  4. 4.Korea Institute of Geoscience and Mineral Resources DaejeonKorea

Personalised recommendations