Skip to main content

Landslide HotSpot Mapping by means of Persistent Scatterer Interferometry

Abstract

Landslide detection and mapping represent fundamental requirements for every hazard and risk evaluation and consequent improvement of the management strategies for such natural hazards. Optical and radar remote sensing can be used to observe landslide-induced ground deformation, ranging from regional to local scales. This work presents a methodology called Landslide HotSpot Mapping; this approach integrates cartographic, thematic and optical data with Persistent Scatterer Interferometry for the identification of extremely slow to very slow moving landslides, and for the evaluation of their state of activity and intensity. This methodology scans wide areas to detect hotspots, which are narrow unstable zones characterized by higher landslide hazard. To these hotspots, priority has to be given when planning field surveys and in situ validation campaigns, so that field work time and effort can be optimized and significantly reduced. The approach is tested in Central Calabria, over a 4,470 km2 area located in southern Italy. ENVISAT ascending images acquired between 2003 and 2009 and processed with the Persistent Scatterer Pairs (PSP) technique are used to analyse deformation patterns. Combining conventional photo-interpretation with the analysis of PSP data, 64 new landslides are identified and the spatial (boundaries) and temporal (activity) information of 980 pre-mapped phenomena (23.6% of updated inventory) are updated. 1,012 active (continuous or reactivated) landslides are identified and 4 hotspot areas selected: San Fili, Rende, Lago, Catanzaro. Urgent field checks have to be organized for these hotspots to validate the satellite-based observations and to design appropriate mitigation measures to reduce impacts on the elements at risk.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. AdB Calabria (2001) PAI, Piano Stralcio di Bacino per l’Assetto Idrogeologico. http://62.149.162.193/pai/map.phtml. Accessed 15 Apr 2011

  2. Amodio Morelli L, Bonardi G, Colonna V, Dietrich D, Giunta G, Ippolito F, Liguori V, Lorenzoni S, Paglionico A, Perrone V, Piccarretta G, Russo M, Scandone P, Zanettin Lorenzoni E, Zuppetta A (1976) L’arco Calabro-Peloritano nell’orogene Appenninico-Maghrebide. Mem Soc Geol Ital 17:1–60

    Google Scholar 

  3. Barrese E, Pellegrino A, Prestininzi A (2006) Weathering of crystalline-metamorphic rocks in the Allaro and Amusa river basin (Serre massif, Calabria, Italy): general aspects and effects of thermal-metamorphic contact belts. Ital J Eng Geol Environ 1:51–74

    Google Scholar 

  4. Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on Small Baseline Differential SAR Interferograms. IEEE Trans Geosci Remote Sens 40(11):2375–2383

    Article  Google Scholar 

  5. Bovenga F, Nutricato R, Refice A, Wasowski J (2006) Application of multi-temporal differential interferometry to slope instability detection in urban/peri-urban areas. Eng Geol 88:219–240

    Article  Google Scholar 

  6. Browitt C, Walker A, Farina P, Devleeschouwer X, Tragheim D, Aktar M (2007) Terra not so firma, Geoscientist. Geol Soc Lond 17(6):18–22

    Google Scholar 

  7. Bürgmann R, Hilley GE, Ferretti A (2006) Resolving vertical tectonics in the San Francisco Bay Area from Permanent Scatterer InSAR and GPS Analysis. Geology 34:221–224

    Article  Google Scholar 

  8. Cabral-Cano E, Arciniega-Ceballos A, Díaz-Molina O, Cigna F, Osmanoglu B, Dixon T, DeMets C, Vergara-Huerta F, Garduño-Monroy VH, Ávila-Olivera JA, Hernández-Quintero E (2010) Is there a tectonic component on the subsidence process in Morelia, Mexico? In: Carreón-Freyre D et al (eds) Land subsidence, associated hazards and the role of natural resources development (328 + iv pp.), Hydrological Sciences Journal, Red Book Series. IAHS Press, Wallingford, UK, pp 164–169

  9. Casagli N, Colombo D, Ferretti A, Guerri L, Righini G (2008) Case study on local landslide risk management during crisis by means of remote sensing data. In: Proceedings of First World Landslide Forum, Tokyo, Japan, November 18–21, 2008, Parallel Session Volume, pp 125–128

  10. Cascini L, Fornaro G, Peduto D (2009) Analysis at medium scale of low-resolution DInSAR data in slow-moving landslide-affected areas. ISPRS J Photogram Remote Sens 64(6):598–611

    Article  Google Scholar 

  11. Cello G, Tortorici L, Turco E, Guerra I (1981) Profili profondi in Calabria settentrionale. Boll Soc Geol Ital 100:423–431

    Google Scholar 

  12. Cigna F, Bianchini S, Righini G, Proietti C, Casagli N (2010a) Updating landslide inventory maps in mountain areas by means of Persistent Scatterer Interferometry (PSI) and photo-interpretation: Central Calabria (Italy) case study. In: Malet JP, Glade T, Casagli N (eds) Mountain risks: bringing science to society, Proceedings of the International Conference, CERG Editions, Florence, Italy, November 24–26, pp 3–9

  13. Cigna F, Del Ventisette C, Liguori V, Casagli N (2010b) InSAR time-series analysis for management and mitigation of geological risk in urban area. In: Proceedings of IGARSS 2010, 30th IEEE international geoscience and remote sensing symposium, Honolulu, Hawaii, USA, July 25–30, pp 1924–1927

  14. Cigna F, Del Ventisette C, Liguori V, Casagli N (2011) Advanced radar-interpretation of InSAR time series for mapping and characterization of geological processes. Nat Hazards Earth Syst Sci 11(3):865–881

    Article  Google Scholar 

  15. Colesanti C, Wasowski J (2006) Investigating landslides with space-borne Synthetic Aperture Radar (SAR) Interferometry. Eng Geol 88:173–199

    Article  Google Scholar 

  16. Costantini M, Iodice A, Magnapane L, Pietranera L (2000) Monitoring terrain movements by means of sparse SAR differential interferometric measurements. In: Proceedings of IGARSS 2000, 20th IEEE international geoscience and remote sensing symposium, Honolulu, Hawaii, USA, July 24–28, p 3225–3227

  17. Crosetto M, Monserrat O, Iglesias R, Crippa B (2010) Persistent Scatterer Interferometry: potential, limits and initial C- and X-band comparison. Photogram Eng Remote Sens 76(9):1061–1069

    Google Scholar 

  18. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and Mitigation, Sp. Rep. 247, Transportation Research Board, National research Council. National Academy Press, Washington DC, pp 36–75

    Google Scholar 

  19. Cucci L, Cinti FR (1998) Regional uplift and local tectonic deformation recorded by the Quaternary marine terraces on the Ionian coast of the northern Calabria (southern Italy). Tectonophysics 292:67–83

    Article  Google Scholar 

  20. Cucci L (2004) Raised marine terraces in the Northern Calabrian Arc (Southern Italy): a ~600 kyr-long geological record of regional uplift. Ann Geophys 47(4):1391–1406

    Google Scholar 

  21. Dixon TH, Amelung F, Ferretti A, Novali F, Rocca F, Dokka R, Sella G, Kim SW, Wdowinski S, Whitman D (2006) Subsidence and flooding in New Orleans: a subsidence map of the city offers insight into the failure of the levees during Hurricane Katrina. Nature 441:587–588

    Article  Google Scholar 

  22. Farina P, Colombo D, Fumagalli A, Marks F, Moretti S (2006) Permanent Scatterers for landslide investigations: outcomes from the ESA-SLAM project. Eng Geol 88:200–217

    Article  Google Scholar 

  23. Farina P, Casagli N, Ferretti A (2008) Radar-interpretation of InSAR measurements for landslide investigations in civil protection practices. In: Proceedings of 1st North American Landslide Conference, Vail, Colorado, pp 272–283

  24. Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102:85–98

    Article  Google Scholar 

  25. Ferranti L, Santoro E, Mazzella ME, Monaco C, Morelli D (2009) Active transpression in the northern Calabria Apennines, southern Italy. Tectonophysics 476:226–251

    Article  Google Scholar 

  26. Ferretti A, Prati C, Rocca F (2001) Permanent Scatterers in SAR Interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20

    Article  Google Scholar 

  27. Ferretti A, Savio G, Barzaghi R, Borghi A, Musazzi S, Novali F, Prati C, Rocca F (2007) Submillimeter accuracy of InSAR time series: experimental validation. IEEE Trans Geosci Remote Sens 45:1142–1153

    Article  Google Scholar 

  28. Genevois R, Prestininzi A (1979) Analisi tridimensionale dei versanti rocciosi: la frana di Salincriti (RC). Geol Appl Idrogeol 19(3):367–387

    Google Scholar 

  29. Greif V, Vlcko J (2011) Monitoring of post-failure landslide deformation by the PS-InSAR technique at Lubietova in Central Slovakia. Environ Earth Sci. doi:10.1007/s12665-011-0951-x

  30. Guerricchio A (2004) Tectonics, deep seated gravitational deformations (dsgsds) and large landslides in Calabria (Southern Italy). In: Proceedings of IGC, Florence, Italy. doi:10.1474/GGA.2005-01.0-08.0008

  31. Guzzetti F (2004) Landslide mapping, hazard assessment and risk evaluation: limits and potential. In: Proceedings of international symposium on landslide and debris flow hazard assessment, National Center for Research on Earthquake Engineering, Taipei, October 7–8, pp C1–C17

  32. Herrera G, Davalillo JC, Cooksley G, Monserrat O, Pancioli V (2009) Mapping and monitoring geomorphological processes in mountainous areas using PSI data: Central Pyrenees case study. Nat Hazards Earth Syst Sci 9:1587–1598

    Article  Google Scholar 

  33. Hilley GE, Bürgmann R, Ferretti A, Novali F, Rocca F (2004) Dynamics of slow-moving landslides from Permanent Scatterer analysis. Science 304(5679):1952–1955

    Article  Google Scholar 

  34. Iovine G, Petrucci O, Rizzo V, Tansi C (2006) The March 7th, 2005 Cavallerizzo (Cerzeto) landslide in Calabria, Southern Italy. IAEG 2006, Paper no. 785

  35. ISPRA (2007) IFFI, Inventario dei Fenomeni Franosi in Italia. http://www.apat.gov.it/site/it-IT/Progetti/IFFI_-_Inventario_dei_fenomeni_franosi_in_Italia/. Accessed 4 May 2011

  36. Knott SD, Turco E (1991) Late Cenozoic kinematics of the Calabrian Arc, Southern Italy. Tecton 10(6):1164–1172

    Article  Google Scholar 

  37. Lanari R, Berardino P, Borgström S, Del Gaudio C, De Martino P, Fornaro G, Guarino S, Ricciardi GP, Sansosti E, Lundgren P (2004) The use of IFSAR and classical geodetic techniques for caldera unrest episodes: application to the Campi Flegrei uplift event of 2000. J Volcanol Geoth Res 133:247–260

    Article  Google Scholar 

  38. Massonnet D, Feigl KL (1998) Radar interferometry and its application to changes in the Earth’s surface. Rev Geophys 36:441–500

    Article  Google Scholar 

  39. Meisina C, Zucca F, Fossati D, Ceriani M, Allievi J (2006) Ground deformations monitoring by using the Permanent Scatterers Technique: the example of the Oltrepo Pavese (Lombardia, Italy). Eng Geol 88:240–259

    Article  Google Scholar 

  40. Meisina C, Zucca F, Notti D, Colombo A, Cucchi A, Savio G, Giannico C, Bianchi M (2008) Geological interpretation of PSInSAR data at regional scale. Sensors 8(11):7469–7492

    Article  Google Scholar 

  41. Notti D, Davalillo JC, Herrera G, Mora O (2010) Assessment of the performance of X-band satellite radar data for landslide mapping and monitoring: Upper Tena Valley case study. Nat Hazards Earth Syst Sci 10:1865–1875

    Article  Google Scholar 

  42. Osmanoglu B, Dixon TH, Wdowinski S, Cabral-Cano E, Jiang Y (2011) Mexico City subsidence observed with Persistent Scatterer InSAR. Int J Appl Earth Obs 13(1):1–12

    Article  Google Scholar 

  43. Pancioli V, Raetzo H, Campolmi T, Casagli N (2008) Terrafirma landslide services for europe based on space-borne InSAR Data. In: Proceedings of first world landslide forum, Tokyo, Japan, November 18–21, Poster Session Volume, pp 81–84

  44. Pellegrino A, Borelli S (2007) Analisi del dissesto da frana in Calabria. In: Trigila A (ed) Rapporto sulle frane in Italia-Il Progetto IFFI: metodologia, risultati e rapporti regionali. APAT Rapporto 78/2007, pp 599–631

  45. Pellegrino A, Prestininzi A, Scarascia Mugnozza G (2008) Costruzione del modello geologico-tecnico in ammassi cristallino-metamorfici affetti da intensi processi di alterazione: un esempio di applicazione nei bacini delle Fiumare Allaro ed Amusa (Massiccio delle Serre, Calabria). Ital J Eng Geol Environ 1:33–60

    Google Scholar 

  46. Righini G, Del Ventisette C, Costantini M, Malvarosa F, Minati F (2008) Space-borne SAR analysis for landslides mapping in the framework of the PREVIEW project. In: Proceedings of first world landslide forum, Tokyo, Japan, November 18–21, Parallel Session Volume, pp 505–506

  47. Righini G, Pancioli V, Casagli N (2011a) Updating landslide inventory maps using Persistent Scatterer Interferometry (PSI). Int J Remote Sens. doi:10.1080/01431161.2011.605087

  48. Righini G, Raspini F, Moretti S, Cigna F (2011b) Unsustainable use of groundwater resources in agricultural and urban areas: a Persistent Scatterer study of land subsidence at the basin scale. In: Villacampa Y, Brebbia CA (eds) Ecosytems and sustainable development VIII. WIT transactions on ecology and the environment, vol. 144 (544 p.). WIT Press, Southampton, pp 81–92

    Chapter  Google Scholar 

  49. Rosen PA, Hensley S, Joughin IR, Li FK, Madsen SN, Rodriguez E, Goldstein RM (2000) Synthetic aperture radar interferometry. Proc IEEE 88(3):333–382

    Article  Google Scholar 

  50. Soeters R, van Westen CJ (1996) Slope instability recognition, analysis and zonation. In: Turner AK, Schuster RL (eds) Landslides: Investigation and Mitigation: Sp. Rep. 247, Transportation Research Board, National research Council. National Academy Press, Washington DC, pp 129–177

    Google Scholar 

  51. Tortorici L, Monaco C, Tansi C, Cocina O (1995) Recent and active tectonics in the Calabrian arc (southern Italy). Tectonophysics 243:37–55

    Article  Google Scholar 

  52. Van Dijk JP, Bello M, Brancaleoni GP, Cantarella G, Costa V, Frixa A, Golfetto F, Merlini S, Riva M, Torricelli S, Toscano C, Zerilli A (2000) A regional structural model for the northern sector of the Calabrian Arc (Southern Italy). Tectonophysics 324:267–320

    Article  Google Scholar 

  53. Werner C, Wegmuller U, Strozzi T, Wiesmann A (2003) Interferometric Point Target Analysis For deformation mapping. In: Proceedings of IGARSS 2003, 23rd IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, July 21–25, pp 4362–4364

  54. Wieczorek GF (1984) Preparing a detailed landslide-inventory map for hazard evaluation and reduction. IAEG Bull 21(3):337–342

    Google Scholar 

  55. WP/WLI-Working Party on World Landslide Inventory (1993) Multilingual glossary for landslides. The Canadian Geotechnical Society, BiTech Publisher, Richmond BC

Download references

Acknowledgments

This work was carried out within the SAFER (Services and Applications For Emergency Response) project, funded by the European Community’s Seventh Framework Programme (FP7/2007-2013) under EC-ESA Grant Agreement n.218802. ENVISAT ASAR data were provided by the ESA managed GSC-DA, funded by the FP7/2007-2013 under EC-ESA Grant Agreement n.223001, and were processed by e-GEOS with the PSP-DIFSAR technique. The authors would like to thank the Italian Civil Protection Department for helping with the selection of the area of interest and the ancillary data collection, and for making the PAI (Piano Stralcio di Bacino per l’Assetto Idrogeologico) available.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Silvia Bianchini.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bianchini, S., Cigna, F., Righini, G. et al. Landslide HotSpot Mapping by means of Persistent Scatterer Interferometry. Environ Earth Sci 67, 1155–1172 (2012). https://doi.org/10.1007/s12665-012-1559-5

Download citation

Keywords

  • Landslide
  • Hotspot mapping
  • Persistent scatterers
  • Landslide inventory
  • State of activity