Environmental Earth Sciences

, Volume 67, Issue 2, pp 589–599 | Cite as

OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media

  • O. Kolditz
  • S. Bauer
  • L. Bilke
  • N. Böttcher
  • J. O. Delfs
  • T. Fischer
  • U. J. Görke
  • T. Kalbacher
  • G. Kosakowski
  • C. I. McDermott
  • C. H. Park
  • F. Radu
  • K. Rink
  • H. Shao
  • H. B. Shao
  • F. Sun
  • Y. Y. Sun
  • A. K. Singh
  • J. Taron
  • M. Walther
  • W. Wang
  • N. Watanabe
  • Y. Wu
  • M. Xie
  • W. Xu
  • B. Zehner
Special Issue

Abstract

In this paper we describe the OpenGeoSys (OGS) project, which is a scientific open-source initiative for numerical simulation of thermo-hydro-mechanical-chemical processes in porous media. The basic concept is to provide a flexible numerical framework (using primarily the Finite Element Method (FEM)) for solving multifield problems in porous and fractured media for applications in geoscience and hydrology. To this purpose OGS is based on an object-oriented FEM concept including a broad spectrum of interfaces for pre- and postprocessing. The OGS idea has been in development since the mid-eighties. We provide a short historical note about the continuous process of concept and software development having evolved through Fortran, C, and C++ implementations. The idea behind OGS is to provide an open platform to the community, outfitted with professional software-engineering tools such as platform-independent compiling and automated benchmarking. A comprehensive benchmarking book has been prepared for publication. Benchmarking has been proven to be a valuable tool for cooperation between different developer teams, for example, for code comparison and validation purposes (DEVOVALEX and CO2 BENCH projects). On one hand, object-orientation (OO) provides a suitable framework for distributed code development; however, the parallelization of OO codes still lacks efficiency. High-performance-computing efficiency of OO codes is subject to future research.

Keywords

Porous media Thermo-hydro-mechanical/chemical Open-source software OpenGeoSys Carbon dioxide storage 

References

  1. Barlag C (1997) Adaptive Methoden zur Modellierung von Stofftransport im Kluftgestein. PhD Thesis, Institute of Fluid Mechanics, Hannover UniversityGoogle Scholar
  2. Bauer S (2006) Process based numerical modeling as a tool for aquifer characterization and groundwater quality evaluation. Habilitation: GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen UniversityGoogle Scholar
  3. Beinhorn M (2005) Contributions to computational hydrology: Non-linear flow processes in subsurface and surface hydrosystems. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen UniversityGoogle Scholar
  4. Beyer C (2007) Applied numerical modeling of saturated / unsaturated flow and reactive contaminant transport: evaluation of site investigation strategies and assessment of environmental impact. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen UniversityGoogle Scholar
  5. Bloecher G, Zimmermann G (2008) Settle3D—a numerical generator for artificial porous media. Comput Geosci 34(12):1827–1842CrossRefGoogle Scholar
  6. Cacace M, Kaiser B, Lewerenz B (2010) Geothermal energy in sedimentary basins: what we can learn from regional numerical models. Chemie der Erde Geochem 70(3):33–46CrossRefGoogle Scholar
  7. Chen C (2006) Integrating GIS methods for the analysis of geosystems. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen UniversityGoogle Scholar
  8. de Jonge J (2004) Contributions to computational geotechnics: Non-isothermal flow in low-permeable porous media. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen UniversityGoogle Scholar
  9. Delfs JO (2010) An Euler-Lagrangian concept for transport processes in coupled hydrosystems. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen University in cooperation with Helmholtz Centre for Environmental Research UFZ and Technische Universität DresdenGoogle Scholar
  10. Delfs JO, Park CH, Kolditz O (2009) A sensitivity analysis of hortonian flow. Adv Water Resour 32(9):1386–1395CrossRefGoogle Scholar
  11. Diersch H (1988) Finite-element modeling of recirculating density-driven saltwater intrusion processes in groundwater. Adv Water Resour 11(1):25–43CrossRefGoogle Scholar
  12. Diersch HJ, Kolditz O (2002) Variable-density flow and transport in porous media: approaches and challenges. Adv Water Resour 25(8–12):899–944CrossRefGoogle Scholar
  13. Engelhardt I (2003) Experimental and numerical investigations with respect to the material properties of geotechnical barriers. PhD Thesis, Tuebingen UniversityGoogle Scholar
  14. Flemisch B, Darcis M, Erbertseder K, Faigle B, Lauser B, Mosthaf K, Muthing S, Nuske P, Tatomir A, Wolff M et al (2011) DuMux: DUNE for multi-phase, component, scale, physics, ... flow and transport in porous media. Adv Water Resour 34(9):1102–1112CrossRefGoogle Scholar
  15. Freiboth S, Class H, Helmig R et al (2009) A model for multiphase flow and transport in porous media including a phenomenological approach to account for deformation—a model concept and its validation within a code intercomparison study. Comput Geosci 13(3):281–300CrossRefGoogle Scholar
  16. Görke UJ, Park CH, Wang W, Singh A, Kolditz O (2011) Numerical simulation of multiphase hydrome-chanical processes induced by CO2 injection in deep saline aquifers. Oil Gas Sci Technol 48:1–15Google Scholar
  17. Gronewold J (2006) Entwicklung eines Internet-Informationssystems zur Modellierung natuerlicher Rueckhalte- und Abbauprozesse im Grundwasser. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen UniversityGoogle Scholar
  18. Habbar A (2001) Direkte und inverse Modellierung reaktiver Transportprozesse in klüftig-porösen medien. PhD Thesis, Institute of Fluid Mechanics, Hannover UniversityGoogle Scholar
  19. Helmig R (1993) Theorie und Numerik der Mehrphasenstroemungen in geklueftet-poroesen Medien. PhD Thesis, Institute of Fluid Mechanics, Hannover UniversityGoogle Scholar
  20. Kaiser R (2001) Gitteradaption für die Finite-Elemente-Modellierung gekoppelter Prozesse in klüftig-porösen Medien. PhD Thesis, Institute of Fluid Mechanics, Hannover UniversityGoogle Scholar
  21. Kalbacher T (2006) Geometric modelling and 3-d visualization of hydrogeological systems: software designing and application. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen UniversityGoogle Scholar
  22. Kalbacher T, Schneider C, Wang W, Hildebrandt A, Attinger S, Kolditz O (2011) Parallelized modelling of soil-coupled 3d water uptake of multiple root systems with automatic adaptive time step control. Vadose Zone J 10:1–9. doi:10.2136/vzj2010.0099 CrossRefGoogle Scholar
  23. Kohlmeier M (2006) Coupling of thermal, hydraulic and mechanical processes for geotechnical simulations of partially saturated porous media. PhD Thesis, Institute of Fluid Mechanics, Hannover UniversityGoogle Scholar
  24. Kolditz O (1990) Zur Modellierung und Simulation geothermischer Transportprozesse in untertägigen Zirkulationssystemen. Dissertation, Akademie der Wissenschaften der DDR, BerlinGoogle Scholar
  25. Kolditz O (1995) Modelling flow and heat transfer in fractured rocks: conceptual model of a 3-d deterministic fracture network. Geothermics 24(3):451–470CrossRefGoogle Scholar
  26. Kolditz O (1996) Stoff- und Waermetransport im Kluftgestein. Habilitation: Institute of Fluid Mechanics, Hannover UniversityGoogle Scholar
  27. Kolditz O, Bauer S (2004) A process-oriented approach to computing multi-field problems in porous media. J Hydroinform 6:225–244Google Scholar
  28. Kolditz O, Ratke R, Diersch H, Zielke W (1998) Coupled groundwater flow and transport: 1. Verification of variable density flow and transport models. Adv Water Resour 21(1):27–46CrossRefGoogle Scholar
  29. Kolditz O, Delfs JO, Bürger C, Beinhorn M, Park CH (2008) Numerical analysis of coupled hydrosystems based on an object-oriented compartment approach. J Hydroinform 10(3):227–244CrossRefGoogle Scholar
  30. Kolditz, O, Goerke, U, Shao, H, Wang, W (eds) (2012) Benchmarks and examples for thermo-hydro-mechanical/chemical processes in Porous Media, 1st edn. Springer, BerlinGoogle Scholar
  31. Kosakowski G (2007) Transport in fractured media: concepts, models, and applications. Habilitation: GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen UniversityGoogle Scholar
  32. Kroehn K (1991) Simulation von Transportvorgaengen im klueftigen Gestein mit der Methode der Finiten Elemente. PhD Thesis, Institute of Fluid Mechanics, Hannover UniversityGoogle Scholar
  33. Lege T (1995) Modellierung des Kluftgesteins als geologische Barriere fuer Deponien. PhD Thesis, Institute of Fluid Mechanics, Hannover UniversityGoogle Scholar
  34. Mayer K, MacQuarrie K (2010) Solution of the MoMaS reactive transport benchmark with MIN3P-model formulation and simulation results. Comput Geosci 14(3):405–419CrossRefGoogle Scholar
  35. McDermott C (2006) Reservoir engineering and system analysis: hydraulic, thermal and geomechanical coupled processes in geosystems. Habilitation: GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen UniversityGoogle Scholar
  36. Miles B (2007) Practical approaches to modeling natural attenuation processes at LNAPL contaminated sites. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen UniversityGoogle Scholar
  37. Moenickes S (2004) Grid generation for simulation of flow and transport processes in fractured porous media. PhD Thesis, Institute of Fluid Mechanics, Hannover UniversityGoogle Scholar
  38. Nowak T, Kunz H, Dixon D, Wang W, Görke UJ, Kolditz O (2011) Coupled 3-D thermo-hydro-mechanical analysis of geotechnical in situ tests. Int J Numer Anal Meth Geomech 48:1–15Google Scholar
  39. Park CH, Beyer C, Bauer S, Kolditz O (2008) A study of preferential flow in heterogeneous media using random walk particle tracking. Geosci J 12(3):285–297CrossRefGoogle Scholar
  40. Piggott A, Bobba A, Xiang J (1994) Inverse analysis implementation of the SUTRA groundwater model. Ground Water 32(5):829–836CrossRefGoogle Scholar
  41. Prommer H, Barry D, Zheng C (2003) MODFLOW/MT3DMS-based reactive multicomponent transport modeling. Ground Water 41(2):247–257CrossRefGoogle Scholar
  42. Pruess K (2004) The TOUGH codes—a family of simulation tools for multiphase flow and transport processes in permeable media. Vadose Zone J 3(3):738–746Google Scholar
  43. Reeves H, Thibodeau P, Underwood R (2000) Incorporation of total stress changes into the ground water model SUTRA. Ground Water 38(1):89–98CrossRefGoogle Scholar
  44. Rink K, Kalbacher T, Kolditz O (2011) Visual data management for hydrological analysis. Environ. Earth Sci. doi:10.1007/s12665-011-1230-6
  45. Rother T (2001) Geometric modelling geo-systems. PhD Thesis, Institute of Fluid Mechanics, Hannover UniversityGoogle Scholar
  46. Rutqvist J, Barr D, Birkholzer J, Chijimatsu M, Kolditz O, Liu Q, Oda Y, Wang W, Zhang C (2008) Results from an international simulation study on coupled thermal, hydrological, and mechanical processes near geological nuclear waste repositories. Nucl Technol 163(1):101–109Google Scholar
  47. Schulze-Ruhfus M (1996) Adaptive Verfeinerung und Vergroeberung gekoppelter 1D/2D/3D Elemente. Diploma Thesis: Institute of Fluid Mechanics, Hannover UniversityGoogle Scholar
  48. Shao H (1994) Simulation von Stroemungs- und Transportvorgaengen im gekluefteten poroesen Medien mit gekoppelten Finite-Elementund und Rand-Element-Methoden. PhD Thesis, Institute of Fluid Mechanics, Hannover UniversityGoogle Scholar
  49. Shao H (2010) Modelling reactive transport processes in porous media. PhD Thesis, Technische Universität Dresden, Chair of Applied Environmental System Analysis, Helmholtz Centre for Environmental Research UFZ, Department of Environmental InformaticsGoogle Scholar
  50. Sudicky E, Jones J, Park Y, Brookfield A, Colautti D (2008) Simulating complex flow and transport dynamics in an integrated surface-subsurface modeling framework. Geosci J 12(2):107–122CrossRefGoogle Scholar
  51. Sun F (2011) Computational hydrosystem analysis: Applications to the meijiang and nankou catchments in china. PhD Thesis, Technische Universität Dresden, Chair of Applied Environmental System Analysis, Helmholtz Centre for Environmental Research UFZ, Department of Environmental InformaticsGoogle Scholar
  52. Sun F, Shao H, Kalbacher T, Wang W, Yang Z, Huang Z, Kolditz O (2011) Groundwater drawdown at Nankou site of Beijing Plain: model development and calibration. Environ Earth Sci 64(5):1323–1333CrossRefGoogle Scholar
  53. Tartakovsky A, Meakin P, Scheibe T (2007) Simulations of reactive transport and precipitation with smoothed particle hydrodynamics. J Comput Phys 222(2):654–672CrossRefGoogle Scholar
  54. Tenzer H (2006) Comparison of the exploration and evaluation techniques of Hot Dry Rock Enhanced Geothermal sites at Soultz-sous-Forêts and Urach Spa in the framework of the geomechanical facies concept. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen UniversityGoogle Scholar
  55. Teutsch G, Krüger (2010) Water science alliance—priority research fields. UFZ, 2010, http://www.watersciencealliance.ufz.de
  56. Thorenz C (2001) Model adaptive simulation of multiphase and density driven flow in fractured and porous media. PhD Thesis, Institute of Fluid Mechanics, Hannover UniversityGoogle Scholar
  57. Walsh R (2007) Numerical modeling of THM coupled processes in fractured porous media. PhD Thesis, GeoHydrology and HydroInformatics, Center for Applied Geosciences, Tuebingen UniversityGoogle Scholar
  58. Wang W, Kolditz O (2007) Object-oriented finite element analysis of thermo-hydro-mechanical (thm) problems in porous media. Int J Numer Methods Eng 69(1):162–201CrossRefGoogle Scholar
  59. Wang W, Kosakowski G, Kolditz O (2009) A parallel finite element scheme for thermo-hydro-mechanical (thm) coupled problems in porous media. Comput Geosci 35(8):1631–1641CrossRefGoogle Scholar
  60. Wang W, Rutqvist J, Görke UJ, Birkholzer J, Kolditz O (2011) Non-isothermal flow in low permeable porous media: a comparison of Richards’ and two-phase flow approaches. Environ Earth Sci 62(6):1197–1207CrossRefGoogle Scholar
  61. Watanabe N (2012) Finite element method for coupled thermo-hydro-mechanical processes in discretely fractured and non-fractured porous media. PhD Thesis, Technische Universität Dresden, Chair of Applied Environmental System Analysis, Helmholtz Centre for Environmental Research UFZ, Department of Environmental InformaticsGoogle Scholar
  62. White M, Oostrom M, Rockhold M (2008) Scalable modeling of carbon tetrachloride migration at the hanford site using the STOMP simulator. Vadose Zone J 7(2):654–666CrossRefGoogle Scholar
  63. Wollrath J (1990) Ein Stroemungs- und Transportmodell fuer klueftiges Gestein und Untersuchungen zu homogenen Ersatzsystemen. PhD Thesis, Institute of Fluid Mechanics, Hannover UniversityGoogle Scholar
  64. Wu Y, Wang W, Toll M, Alkhoury W, Sauter M, Kolditz O (2011) Development of a 3D groundwater model based on scarce data: the Wadi Kafrein catchment/Jordan. Environ Earth Sci 64(3):771–785CrossRefGoogle Scholar
  65. Xie M, Bauer S, Kolditz O, Nowak T, Shao H (2006) Numerical simulation of reactive processes in an experiment with partially saturated bentonite. J Contam Hydrol 83(1–2):122–147CrossRefGoogle Scholar
  66. Xu T, Sonnenthal E, Spycher N, Pruess K (2006) TOUGHREACT—a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestration. Comput Geosci 32(2):145–165CrossRefGoogle Scholar
  67. Zehner B, Watanabe N, Kolditz O (2010) Visualization of gridded scalar data with uncertainty in geosciences. Comput Geosci 36(10):1268–1275CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • O. Kolditz
    • 1
  • S. Bauer
    • 3
  • L. Bilke
    • 2
  • N. Böttcher
    • 4
  • J. O. Delfs
    • 2
  • T. Fischer
    • 2
  • U. J. Görke
    • 2
  • T. Kalbacher
    • 2
  • G. Kosakowski
    • 5
  • C. I. McDermott
    • 6
  • C. H. Park
    • 7
  • F. Radu
    • 2
  • K. Rink
    • 2
  • H. Shao
    • 8
  • H. B. Shao
    • 2
  • F. Sun
    • 9
  • Y. Y. Sun
    • 2
  • A. K. Singh
    • 2
  • J. Taron
    • 2
  • M. Walther
    • 4
  • W. Wang
    • 2
  • N. Watanabe
    • 2
  • Y. Wu
    • 10
  • M. Xie
    • 11
  • W. Xu
    • 8
  • B. Zehner
    • 2
  1. 1.Helmholtz Centre for Environmental Research—UFZ/TU DresdenLeipzigGermany
  2. 2.Helmholtz Centre for Environmental Research—UFZLeipzigGermany
  3. 3.University of KielKielGermany
  4. 4.TU DresdenDresdenGermany
  5. 5.Paul-Scherrer-InstituteVilligenSwitzerland
  6. 6.University of EdinburghEdinburghUK
  7. 7.Korea Institute of Geoscience and Mineral Resources (KIGAM)DaejeonKorea
  8. 8.Federal Institute for Geosciences and Natural ResourcesHannoverGermany
  9. 9.Beijing Hydrological CenterBeijingChina
  10. 10.Ocean University of ChinaQingdaoChina
  11. 11.Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)BraunschweigGermany

Personalised recommendations