Skip to main content

Advertisement

Log in

Reconstruction of hydrocarbons accumulation in sediments affected by the oil refinery industry: the case of Tehuantepec Gulf (Mexico)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The Isthmus of Tehuantepec corresponds to the shortest distance (~200 km) between the Gulf of Mexico and the Pacific Ocean in Southern Mexico, and the main economical activity of this region is oil extraction and refining. Polycyclic aromatic hydrocarbons (PAHs) and total petroleum hydrocarbons (TPHs) were determined in a 210Pb dated sediment core collected from the continental shelf of Tehuantepec Gulf, in the vicinity of the oil refinery of Salina Cruz, Oaxaca, the main oil refining facility of the country. The sediments were mostly of coarse nature and hence PAHs and TPHs concentrations throughout the core (61–404 μg g−1 and 29–154 mg kg−1, respectively) were below international quality benchmarks. Depth profiles of both PAHs and TPHs concentrations showed increasing trends since the early 1900s but the higher values were found from the 1950s to present. PAH congener ratios showed that these contaminants had both petrogenic and pyrolitic sources, although the former has been predominant since the 1970s. The Salina Cruz refinery started operations in 1978 but the oil industry activities in the Tehuantepec Isthmus go back to the beginning of the twentieth century with the operation of Minatitlan refinery in the Gulf of Mexico, and the Gulf of Tehuantepec being the main conduit for oil distribution in the Pacific coast. The observed changes in contaminant distributions described well the oil industry development in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrajano TA Jr, Yan B, O’Malley V (2005) High molecular weight petrogenic and pyrogenic hydrocarbons in aquatic environments. In: Sherwood Lollar B (ed) Treatise on geochemistry. Elsevier, Oxford, pp 475–509

    Google Scholar 

  • Andrade L, Marcet P, Fernández Feal L, Fernández Feal C, Covelo EF, Vega FA (2004) Impact of the prestige oil spill on marsh soils: relationship between heavy metal, sulfide and total petroleum hydrocarbon contents at the Villarrube and Lires Marshes (Galicia, Spain). Ciencias Marinas 30:477–487

    Google Scholar 

  • Appleby PG, Oldfield F (1992) Application of lead-210 to sedimentation studies. In: Ivanovich M, Harmon RS (eds) Uranium series disequilibrium: application to earth, marine and environmental science. Oxford Science Publications, Oxford, pp 731–783

    Google Scholar 

  • Arriaga L, Espinoza JM, Aguilar C, Martínez E, Gómez L, Loa E (2000) Regiones terrestres prioritarias de México. Comisión Nacional para el Conocimiento y uso de la Biodiversidad (CONABIO), México, pp 514–518

  • ATSDR (1999) Toxicological profile for total petroleum hydrocarbons (TPH). Agency for toxic substances and disease registry. US Department of Health and Human Services. http://www.atsdr.cdc.gov/PHS/PHS.asp?id=422&tid=75. Accessed 3 July 2011

  • Barton ED, Argote ML, Brown J, Kosro P, Lavin M, Robles JM, Smith RL, Trasviña A, Velez HS (1993) Supersquirt: dynamics of the Gulf of Tehuantepec, Mexico. Oceanography 6(1):23–30

    Google Scholar 

  • Biscaye PE (1965) Mineralogy and sedimentation of recent deep sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull 76(7):803–832

    Article  Google Scholar 

  • Botello AV, Díaz G, Pica Y, Villanueva S (1995) Contaminación por hidrocarburos aromáticos policíclicos en sedimentos y organismos del Puerto de Salinas Cruz, Oaxaca, México. Rev Intern Contamin Ambiental 11:21–30

    Google Scholar 

  • Botello AV, Villanueva SF, Diaz G, Escobar-Briones E (1998) Polycyclic aromatic hydrocarbons in sediments from Salina Cruz Harbor and Coastal Areas, Oaxaca, Mexico. Mar Poll Bull 36:554–558

    Article  Google Scholar 

  • Buchman MF (2008) NOAA Screening Quick Reference Tables. NOAA OR&R Report 08-1. Seattle WA, Office of Response and Restoration Division, National Oceanic and Atmospheric Administration

  • CalEPA (1994) Benzo(a)pyrene as a toxic air contaminant. Part B: health assessment. California Environmental Protection Agency. Office of environmental health hazard assessment, Berkeley, CA

  • Calvert SE, Pedersen TF (2008) Elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: interpretation and applications. In: Hillaire-Marcel C, de Vernal A (eds) Proxies in late cenozoic paleoceanography. Developments in marine geology, vol 1. Elsevier, Amsterdam, pp 568–644

    Google Scholar 

  • Canton L, Grimalt JO (1992) Gas chromatographic-mass spectrometric characterization of polycyclic aromatic hydrocarbon mixtures in polluted coastal sediments. J Chromatogr A 607:279–286

    Article  Google Scholar 

  • Carranza-Edwards A (1980) Ambientes sedimentarios recientes de la llanura costera sur del Istmo de Tehuantepec. Anales del Centro Ciencias del Mar y Limnología 7:13–66

    Google Scholar 

  • Choudhary P, Routh J (2010) Distribution of polycyclic aromatic hydrocarbons in Kumaun Himalayan Lakes, northwest India. Org Geochem 41(9):891–894

    Article  Google Scholar 

  • Connell DW, Hawker DW, Warne MJ, Vowles PP (1997) Polycyclic aromatic hydrocarbons (PAHs). In: McCombs K, Starkweather AW (eds) Introduction into environmental chemistry. CRC Press, Boca Raton, pp 205–217

    Google Scholar 

  • Conney AH (1982) Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons. Cancer Res 42:4875–4917

    Google Scholar 

  • Cook HE, Johnson PD, Matti JC, Zemmels I (1975) Methods of sample preparation and X-ray diffraction data analysis. In: Hayes DE, Frakes LA et al (eds) Init. Repts. DSDP 28, US Govt Printing Office, Washington, pp 999–1007

  • DDEP (2010) Data Decay Evaluation Project. Table de radionucléide 210Pb. http://www.nucleide.org/DDEP_WG/DDEPdata.htm. Accessed 10 March 2010

  • EPA (1982) Priority pollutants. Federal Register 47, 224, 1158:52290–52309

  • EPA (2009) Response to 2005 hurricanes. Summary of Sediment Testing. United States Environmental Protection Agency. http://www.epa.gov/katrina/testresults/sediments/index.html. Accessed 25 January 2011

  • EPA (2010) Response to BP spill in the Gulf of Mexico. United States Environmental Protection Agency. http://www.epa.gov/bpspill/sediment.html. Accessed 25 January 2011

  • EPA (2011) Ecological risk assessment marine screening benchmarks. United States Environmental Protection Agency. http://www.epa.gov/reg3hwmd/risk/eco/btag/sbv/marine/screenbench.htm. Accessed 30 July 2011

  • Fagel N (2007) Clay minerals, deep circulation and climate. In: Hillaire-Marcel C, de Vernal A (eds) Proxies in late cenozoic paleoceanography. Developments in marine geology, vol 1. Elsevier, Amsterdam, pp 139–184

    Chapter  Google Scholar 

  • Fang MD, Lee CL, Yu CS (2003) Distribution and source recognition of polycyclic aromatic hydrocarbons in the sediments of Hsin-ta harbour and adjacent coastal areas. Taiwan Mar Poll Bull 46:941–953

    Article  Google Scholar 

  • FDEP (2010) Deepwater horizon response water sampling. Florida Department of Environmental Protection. http://www.dep.state.fl.us/deepwaterhorizon/water.htm#counties. Accessed 25 January 2011

  • Ferraro L, Sammartino S, Feo ML, Rumolo P, Salvagio Manta D, Marsella E, Sprovieri M (2009) Utility of benthic foraminifera for biomonitoring of contamination in marine sediments: a case study from the Naples harbour (Southern Italy). J Environ Monit 11:1226–1235

    Article  Google Scholar 

  • Flynn WW (1968) Determination of low levels of polonium-210 in environmental materials. Anal Chim Acta 43:221–227

    Article  Google Scholar 

  • Folk RL (1974) Petrology of sedimentary rocks. Hemphill Pub. Co., Austin, Texas

    Google Scholar 

  • Frignani M, Bellucci LG, Raccanelli S, Albertazzi S (2003) Polycyclic aromatic hydrocarbons in sediments of the Venice lagoon. Hydrobiologia 494:283–290

    Article  Google Scholar 

  • Fu S, Li K, Xia XJ, Xu XB (2009) Polycyclic aromatic hydrocarbons residues in sandstorm depositions in Beijing. China Bull Environ Contam Toxicol 82:162–166

    Article  Google Scholar 

  • García E (1981) Modificaciones al sistema de clasificación climática de Copen para adaptarlo a las condiciones de la República Mexicana. Instituto de Geografía, Universidad Nacional Autónoma de México, DF

    Google Scholar 

  • Garcia EM, Siegert IG, Suarez P (1998) Toxicity assays and naphthalene utilization by natural bacteria selected in marine environments. Bull Environ Contam Toxicol 61:370–377

    Article  Google Scholar 

  • García-Mendoza AJ, Ordóñez Díaz MJ, Briones-Salas M (2004) Biodiversidad de Oaxaca. UNAM, México City

    Google Scholar 

  • George S (1994) Bias associated with the use of EPA Method 418.1 for the determination of total petroleum hydrocarbons in soil. In: Calabrese EJ, Kostecki PT, Bonazountas M (eds) Hydrocarbon contaminated soils. Lewis Publishers, Chelsea, pp 115–142

    Google Scholar 

  • Giuliani S, Sprovieri M, Frignani M, Cu NH, Mugnai C, Bellucci LG, Albertazzi S, Romano S, Feo ML, Marsella E, Nhon DH (2008) Presence and origin of polycyclic aromatic hydrocarbon in sediments of nine coastal lagoons in central Vietnam. Mar Poll Bull 56:1486–1512

    Article  Google Scholar 

  • González-Lozano MC, Mendez-Rodriguez LC, Lopez-Veneroni DG, Vázquez-Botello A (2006) Evaluation of sediment contamination in the port and coastal zone of Salina Cruz, Oaxaca Mexico. Interciencia 31:647–656

    Google Scholar 

  • González-Macías C, Schifter I, Lluch-Cota DB, Méndez-Rodríguez V, Hernández-Vázquez S (2007) Environmental assessment of aromatic hydrocarbons-contaminated sediments of the Mexican Salina Cruz Bay. Environ Monit Assess 133:187–207

    Article  Google Scholar 

  • Heit M, Tan YL, Miller AM (1988) The origin and deposition history of polycyclic aromatic hydrocarbons in the finger lakes region of New York. Water Air Soil Pollut 37:85–110

    Article  Google Scholar 

  • INEGI (2011a) Geología de Oaxaca. Instituto Nacional de Estadística, Geografía e Informática. http://mapserver.inegi.org.mx/geografia/espanol/estados/oax/geolo.cfm?c=444&e=06. Accessed 19 July 2011

  • INEGI (2011b) Principales suelos en México. Instituto Nacional de Estadística, Geografía e Informática. http://mapserver.inegi.gob.mx/geografia/espanol/datosgeogra/fisigeo/principa.cfm. Accessed 19 July 2011

  • ISO (2005) Determination of mineral oil content. Method by infrared spectrometry and gas chromatographic method (ISO/TR 11046:1994). International Organization for Standardization. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=19027/. Accessed 28 June 2011

  • Iturbe R, Flores C, Castro A, Torres LG (2007) Sub-soil contamination due to oil spills in zones surrounding oil pipeline-pump stations and oil pipeline right-of-ways in Southwest-Mexico. Environ Monitor Assess 133:387–398

    Article  Google Scholar 

  • Kannan K, Johnson BR, Yohn SS, Giesy JP, Long DT (2005) Spatial and temporal distribution of polycyclic aromatic hydrocarbons in sediments from inland lakes in Michigan. Environ Sci Technol 39:4700–4706

    Article  Google Scholar 

  • Ke L, Wong TWY, Wong YS, Tam NFY (2002) Fate of polycyclic aromatic hydrocarbon (PAH) contamination in a mangrove swamp in Hong Kong following an oil spill. Mar Poll Bull 45:339–347

    Article  Google Scholar 

  • Kendall C, McDonnell JJ (1998) Isotope tracers in catchment hydrology. Elsevier Science BV, Amsterdam, pp 611–646

    Google Scholar 

  • Klug HP, Alexander LE (1974) X-ray diffraction procedures, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  • Krishnaswamy DL, Martin JM, Meybeck M (1971) Geochronology of lake sediments. Earth Planet Sci Lett 11:407–414

    Article  Google Scholar 

  • Latimer JS, Quinn JG (1996) Historical trends and current inputs of hydrophobic organic compounds in an urban estuary: the sedimentary record. Environ Sci Technol 30:623–633

    Article  Google Scholar 

  • Lavin M, Robles M, Argote E, Barton R, Smith J, Brown M, Kosro A, Transviña H, Vélez García J (1992) Physics of the Gulf of Tehuantepec. Mexico. Ciencia y Desarrollo 17:97–180

    Google Scholar 

  • LDEQ (2003) Screening standards for soil and groundwater. Louisiana Department of Environmental Quality Risk Evaluation/Corrective Action Program (RECAP). October 20, 2003. http://www.deq.louisiana.gov/portal/DIVISIONS/UndergroundStorageTankandRemediationDivision/RemediationServices/RECAP/RECAPDocument2003.aspx. Accessed 18 July 2011

  • Li GC, Xia XH, Yang ZF, Wang R, Voulvoulis N (2006) Distribution and sources of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River, China. Environ Pollut 144(2006):985–993

    Article  Google Scholar 

  • Lima AL, Eglinton TI, Reddy CM (2003) High-resolution record of pyrogenic polycyclic aromatic hydrocarbon deposition during the 20th century. Environ Sci Technol 37:53–61

    Article  Google Scholar 

  • Liu Z, Colin C, Trentesaux A, Blamart D, Bassinot F, Siani G, Sicre MA (2004) Erosional history of the eastern Tibetan Plateau since 190 kyr ago:clay mineralogical and geochemical investigations from the southwestern South China Sea. Chem Geol 209:1–18

    Article  Google Scholar 

  • Liu ZT, Colin C, Trentesaux A, Siani G, Frank N, Blamart D, Farid S (2005) Late Quaternary climatic control on erosion and weathering in the eastern Tibetan Plateau and the Mekong Basin. Quat Res 63:316–328

    Article  Google Scholar 

  • López JA, Lorenzo C, Barragán F, Bolaños J (2009) Terrestrial mammals of the lagoon area from the Isthmus of Tehuantepec, Oaxaca, Mexico. Rev Mex Biodiv 80(2):491–505

    Google Scholar 

  • Loring DH, Næs K, Dahle S, Matishov GG, Illin G (1995) Arsenic, trace metals, and organic micro contaminants in sediments from the Pechora Sea, Russia. Mar Geol 128:153–167

    Article  Google Scholar 

  • Martínez-Laguna N, Sánchez-Salazar MT, Casado-Izquierdo JM (2002) Istmo de Tehuantepec: un espacio geoestratégico bajo la influencia de intereses nacionales y extranjeros. Éxitos y fracasos en la aplicación de políticas de desarrollo industrial (1820–2002). Investigaciones Geográficas, Boletín del Instituto de Geografía 49:118–135

    Google Scholar 

  • McCall PL, Robbins JA, Matisoff G (1984) 137Cs and 210Pb transport and geochronologies in urbanized reservoirs with rapidly increasing sedimentation rates. Chem Geol 44:33–65

    Article  Google Scholar 

  • McCready S, Sleeb DJ, Birch GF, Taylor SE (2000) The distribution of polycyclic aromatic hydrocarbons in surficial sediments of Sydney Harbour, Australia. Mar Poll Bull 40:999–1006

    Article  Google Scholar 

  • Middleton GV (2003) Encyclopedia of sediments and sedimentary rocks. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Moore DM, Reynolds RC (1989) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, New York

    Google Scholar 

  • Nagpal NK (1993) Ambient water quality criteria for polycyclic aromatic hydrocarbons (PAHs). Ministry of Environment, Lands and Parks Province of British Columbia. http://www.env.gov.bc.ca/wat/wq/BCguidelines/pahs/index.html. Accessed 17 August 2011

  • Nielsen T, Jørgensen HE, Larsen JC, Poulsen M (1995) City air pollution of polycyclic aromatic hydrocarbons and other mutagens: occurrence, sources and health effects. Sci Total Environ 189(190):41–49

    Google Scholar 

  • Page DS, Boehm PD, Douglas GS, Bence EA, Burns WA, Mankiewicz PJ (1999) Pyrogenic polycyclic aromatic hydrocarbons in sediment record past human activity: a case study in Prince William sound, Alaska. Mar Poll Bull 38:247–260

    Article  Google Scholar 

  • Peters CA, Knightes CD, Brown DG (1999) Long-term composition dynamics of PAH-containing NAPLs and implications for risk assessment. Environ Sci Technol 33:4499–4507

    Article  Google Scholar 

  • Petschick R, Kuhn G, Gingele F (1996) Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Mar Geol 130:203–229

    Article  Google Scholar 

  • Prahl FG, Carpenter R (1983) Polycyclic aromatic hydrocarbons (PAH)—phase associations in Washington coastal sediment. Geochim Cosmochim Acta 47:1013–1023

    Article  Google Scholar 

  • Quiroz R, Popp P, Urrutia R, Bauer C, Araneda A, Treutler HC, Barra R (2005) PAH fluxes in the Laja Lake of south central Chile Andes over the last 50 years: evidence from a dated sediment core. Sci Total Environ 349:150–160

    Article  Google Scholar 

  • Rao VP, Rao BR (1995) Provenance and distribution of clay minerals in the sediments of the western continental shelf and slope of India. Cont Shelf Res 15:1757–1771

    Article  Google Scholar 

  • Rauckyte T, Żak S, Pawlak Z, Oloyede A (2010) Determination of oil and grease, total petroleum hydrocarbons and volatile aromatic compounds in soil and sediment samples. J Environ Eng Landsc Manage 18:163–169

    Article  Google Scholar 

  • Readman JW, Fillmann G, Tolosa I, Bartocci J, Villeneuve JP, Catinni C, Mee LD (2002) Petroleum and PAH contamination of the Black Sea. Mar Poll Bull 44:48–62

    Article  Google Scholar 

  • Robbins JA, Edgington DN (1975) Determination of recent sedimentation rates in lake Michigan using Pb-210 and Cs-137. Geochim Cosmochim Acta 39:285–304

    Article  Google Scholar 

  • Ruiz-Fernández AC, Hillaire-Marcel C, de Vernal A, Machain-Castillo ML, Vasquez L, Ghaleb B, Aspiazu-Fabian JA, Paez-Osuna F (2009) Changes of coastal sedimentation in the Gulf of Tehuantepec, South Pacific Mexico, over the last 100 years from short-lived radionuclide measurements. Est Coast Shelf Sci 82:525–536

    Article  Google Scholar 

  • Ruiz-Fernández AC, Páez-Osuna F, Machain-Castillo ML, Arellano-Torres E (2004) 210Pb geochronology and trace metal fluxes (Cd, Cu and Pb) in the Gulf of Tehuantepec, South Pacific of Mexico. J Environ Radioact 76:161–175

    Article  Google Scholar 

  • Sanchez-Cabeza JA, Druffel ERM (2009) Environmental records of anthropogenic impacts on coastal ecosystems: an introduction. Mar Pollut Bull 59:87–90

    Article  Google Scholar 

  • Schell WR, Nevissi A (1983) Sedimentation in lakes and reservoirs. In: IAEA Guidebook on nuclear techniques in hydrology, Technical Reports Series 91, Vienna, pp 163–176

  • Schoeny R, Poirier K (1993) Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons. US Environmental Protection Agency EPA/600/R-93/089 (NTIS PB94116571), Washington

  • SEMARNAT (2000) http://app1.semarnat.gob.mx/dgeia/estadisticas_2000/compendio_2000/03dim_ambiental/03_03_Suelos/index.shtml#clasificacion. Accessed 19 July 2011

  • SIE (2010) Elaboración de productos petrolíferos por refinería. Sistema de Información Energética. Secretaría de Energía. http://sie.energia.gob.mx. Accessed 25 January 2011

  • Simpson CD, Mosi AA, Cullen WR, Reimer KJ (1996) Composition and distribution of polycyclic aromatic hydrocarbon contamination in surficial marine sediments from Kitimat harbor, Canada. Sci Total Environ 181(3):265–278

    Article  Google Scholar 

  • Singer A (1984) The paleoclimatic interpretation of clay minerals in sediments—a review. Earth Sci Rev 21:251–293

    Article  Google Scholar 

  • Soclo HH, Garrigues PH, Ewald M (2000) Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Mar Poll Bull 40:387–396

    Article  Google Scholar 

  • Speight JG (2005) Environmental analysis and techonology for the refining industry. Wiley Interscience, New Jersey

    Book  Google Scholar 

  • Thiry M (2000) Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth Sci Rev 49:201–221

    Article  Google Scholar 

  • Thomas AR, Murray HH (1989) Clay mineral segregation by flocculation in the porters creek formation. Clay Clay Miner 37:179–184

    Article  Google Scholar 

  • Tolosa I, de Mora S, Sheikholeslami MR, Villeneuve JP, Bartocci J, Cattini C (2004) Aliphatic and aromatic hydrocarbons in coastal Caspian Sea sediments. Mar Poll Bull 48:44–60

    Article  Google Scholar 

  • Trasviña A, Barton ED (1997) Los “Nortes” del golfo de Tehuantepec: la circulación costera inducida por el viento en contribuciones a la Oceanografía física en México. In: Lavin MF (ed) Monografía 3. Unión Geofís, México, pp 24–46

    Google Scholar 

  • Vega FA, Covelo EF, Reigosa MJ, Andrade ML (2009) Degradation of fuel oil in salt marsh soils affected by the Prestige oil spill. J Hazard Mater 166:1020–1029

    Article  Google Scholar 

  • Venkatesan MI (1988) Occurrence and possible sources of Perylene in marine sediments—a review. Mar Chem 25:1–27

    Article  Google Scholar 

  • Wakeham SG, Schaffner C, Giger W (1980) Polycyclic aromatic hydrocarbons in recent lake sediments-II. Compounds derived from biogenic precursors during early diagenesis. Geochim Cosmochim Acta 44:415–429

    Article  Google Scholar 

  • Wakeham S, Forrest J, Masiello CA, Gélinas Y, Alexander CR, Leavitt PR (2004) Hydrocarbons in Lake Washington sediments. A 25-year retrospective in an urban lake. Environ Sci Technol 38:431–439

    Article  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci 63:251–263

    Article  Google Scholar 

  • Windom HL (1975) Eolian contribution to marine sediments. J Sediment Petrol 45:250–529

    Google Scholar 

  • Wing SL, Gingerich PD, Schmitz B, Thomas E (2003) Causes and consequences of globally warm climates in the early Paelogene. Geological Society of America, USA

    Google Scholar 

  • Yunker MB, Macdonald RW, Cretney WJ, Fowler BR, Mc-Laughin FA (1993) Alkane, terpene and polycyclic aromatic hydrocarbon geochemistry of the Mackenzie River and Mackenzie shelf: riverine contributions to Beaufort Sea coastal sediment. Geochim Cosmochim Acta 57:3041–3061

    Article  Google Scholar 

  • Zabel M, Schneider RR, Wagner T, Adegbie AT, de Vries U, Kolonic S (2001) Late Quaternary climate changes in Central Africa as inferred from terrigenous input to the Niger fan. Quat Res 56:207–217

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by grants SEP-2004-C01-45841-F from the Consejo Nacional de Ciencia y Tecnología (CONACyT), and PAPIIT IN105009 from the Universidad Nacional Autónoma de México (UNAM). The mobility grants for A. C. Ruiz-Fernández, M. Sprovieri, M. Frignani and L. G. Bellucci were provided by the UNAM-CIC Program of Academic Mobility, ISMAR-CNR and the bilateral program for academic exchange CONACYT-CNR. Thanks are due to the crew of the O/V “El Puma” for their support during sampling activities and to H. Bojórquez-Leyva, M.C. Ramírez-Jáuregui and G. Ramírez-Reséndiz for their technical assistance. This is contribution No. 1746 from the CNR-ISMAR, Bologna, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Carolina Ruiz-Fernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz-Fernández, A.C., Sprovieri, M., Frignani, M. et al. Reconstruction of hydrocarbons accumulation in sediments affected by the oil refinery industry: the case of Tehuantepec Gulf (Mexico). Environ Earth Sci 67, 727–742 (2012). https://doi.org/10.1007/s12665-011-1520-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-011-1520-z

Keywords

Navigation