Environmental Earth Sciences

, Volume 66, Issue 8, pp 2477–2489 | Cite as

GIS and multi-criteria analysis to select potential sites of agro-industrial complex

  • Houda SahnounEmail author
  • Mohamed Moncef Serbaji
  • Boubaker Karray
  • Khaled Medhioub
Original Article


The selection of the potential sites to the creation of an agro-industrial complex requires a large amount of spatial information. Geographical information systems are capable of managing this information, providing the ability to integrate multiple layers of information and deriving new ones. This study incorporates environmental, social, economic, geological and infrastructural data. A multi-criteria analysis is performed to select the potential sites to the creation of an agro-industrial complex in the city of Sfax (the southern coast of Tunisia). The comparison by pair method adopted in this paper, based on a linear combination pondered after having assigned to every factor of decision a coefficient of level-headedness, creates many scenarios among which we selected the sustainable development one. This scenario assigned the highest weight to the economical, environmental and social factors (0.3 for each factor), which shows the presence of nine suitable sectors for the creation of an agro-industrial complex. The ELECTRE method enabled us to make a site ordering for the identification of the most three appropriate sites.


Olive mill waste water Geographical information system (GIS) Multi-criteria analysis Decision support 


  1. Akgun A, Türk N (2010) Landslide susceptibility mapping for Ayvalik Western Turkey and its vicinity by multicriteria decision analysis. Environ Earth Sci 61:595–611. doi: 10.1007/s12665-009-0373-1 CrossRefGoogle Scholar
  2. Al-Adamat R, Diabat A, Shatnawi G (2010) Combining GIS with multicriteria decision making for siting water harvesting ponds in Northern Jordan. J Arid Env 74:1471–1477. doi: 10.1016/j.jaridenv.2010.07.001 CrossRefGoogle Scholar
  3. Altieri R, Esposito A (2010) Evaluation of the fertilizing effect of olive mill waste compost in compost in short-term crops. Inter Biodeter Biodeg 64:124–128. doi: 10.1016/j.ibiod.2009.12.002 CrossRefGoogle Scholar
  4. Annesini MC, Giona AR, Gironi F, Pochetti F (1983) Treatment of olive oil wastes by distillation. Eft Wat Treat J 23:245–248Google Scholar
  5. Atanassova D, Kefalas P, Petrakis C, Mantzavinos D, Kalogerakis N, Psillakis E (2005) Sonochemical reduction of the antioxidant activity of olive mill wastewater. Environ Inter 31:275–280. doi: 10.1016/j.envint.2004.10.004 CrossRefGoogle Scholar
  6. Banai-Kashani R (1989) A new method for site suitability analysis: an analytic hierarchy process. Environ Manag 13:693–785. doi: 10.1007/BF01868308 CrossRefGoogle Scholar
  7. Bantayan NC, Bishop ID (1998) Linking objective and subjective modeling for landuse decision-making. Land Urban Plan 43:35–48. doi: 10.1016/S0169-2046(98)00101-7 CrossRefGoogle Scholar
  8. Cabrera F, Lopez R, Martinez-Bordiú A, Dupuy de Lome E, Murillo JM (1996) Land treatment of olive mill waste water. Inter Biodeter Biodegr 38:215–225. doi: 10.1016/S0964-8305(96)00054-6 CrossRefGoogle Scholar
  9. Capasso R, Cristinzio G, Evidente A, Scognamiglio F (1992) Isolation spectroscopy and selective phytotoxic effects of polyphenols from vegetable waste waters. Phytochemistry 31:4125–4128. doi: 10.1016/0031-9422(92)80426-F CrossRefGoogle Scholar
  10. Carver S (1991) Integrating multi-criteria evaluation with geographical information systems. Inter J Geogr Inform Syst 5:321–339. doi: 10.1080/02693799108927858 CrossRefGoogle Scholar
  11. Cegarra J, Peredes C, Roig A, Bernal MP, Garcia D, Aragon P (1996) Use of olive mill waste water compost for crop production. Inter Biodeter Biodegr 38:193–203. doi: 10.1016/S0964-8305(96)00051-0 CrossRefGoogle Scholar
  12. Chouchene A, Jeguirim M, Trouvé G, Favre-Reguillon A, Le Buzit G (2010) Combined process for the treatment of olive oil mill wastewater: absorption on swadust and combustion of the impregnated sawdust. Biores Technol 101:6962–6971. doi: 10.1016/j.biortech.2010.04.017 CrossRefGoogle Scholar
  13. Dai FC, Lee CF, Zhang XH (2001) GIS-based geo-environmental evaluation for urban land-use planning: a case study. Eng Geol 61:257–271. doi: 10.1016/S0013-7952(01)00028-X CrossRefGoogle Scholar
  14. Eastman JR (1993) Idrisi ver.4.1 users guide and technical reference. Graduate School of Geography, Clark University, WorcesterGoogle Scholar
  15. Eastman JR, Jin W, Kyem PAK, Toledano J (1995) Raster procedures for multi-criteria/multi-objective decisions. Photogramm Eng Remote Sens 61:539–547Google Scholar
  16. Fazlollahi B, Parikh MA, Verma S (1997) Adaptive decision support systems. Decis Support Syst 20:297–315CrossRefGoogle Scholar
  17. Filippini-Alba JM, De Souza Filho CR (2010) GIS-based environmental risk assessment in the Ribeira Valley, Sao Paulo, Brazil. Environ Earth Sci 59:1139–1147. doi: 10.1007/s12665-009-0104-7 CrossRefGoogle Scholar
  18. Gemitzi A, Tsihrintzis VA, Voudrias E, Petalas Ch, Stravodimos G (2007) Combining geographic information system, multicriteria evaluation techniques and fuzzy logic in siting MSW landfills. Environ Geol 51:797–811. doi: 10.1007/s00254-006-0359-1 Google Scholar
  19. Gilliams S, Raymaekers D, Muys B, Van Orshoven J (2005) Comparing multiple criteria decision methods to extend a geographical information system on afforestation. Comput Electron Agric 49:142–158. doi: 10.1016/j.compag.2005.02.011 CrossRefGoogle Scholar
  20. Giordano LC, Riedel PS (2008) Multi-criteria spatial decision analysis for demarcation of greenway: a case study of the city of Rio Claro, São Paulo, Brazil. Land Urb Plan 84:301–311. doi: 10.1016/j.landurbplan.2007.09.006 CrossRefGoogle Scholar
  21. Hiscock KM, Lovett AA, Brainard JS, Parfitt JP (1995) Groundwater vulnerability assessment: two case studies using GIS methodology. Intern J Rock Mech Min Sci Geomech 28:179–194. doi: 10.1016/0148-9062(96)83816-2 Google Scholar
  22. Hytiris N, Kapellakis IE, de La Roij R, Tsagarakis KP (2004) The potential use of olive mill sludge in solidification process. Resour Conserv Recycl 40:129–139. doi: 10.1016/S0921-3449(03)00038-7 CrossRefGoogle Scholar
  23. Jankowski P (1989) Mixed-data multicriteria evaluation for regional planning: a systematic approach to the decision-making process. Environ Plan 21:349–362. doi: 10.1068/a210349 CrossRefGoogle Scholar
  24. Jarboui R, Chtourou M, Azri Ch, Gharsallah N, Ammar E (2010) Time-dependent evolution of olive mill wastewater sludge organic and inorganic components and resident microbiota in multi-pond evaporation system. Biores Technol 101:5749–5758. doi: 10.1016/j.biortech.2010.02.069 CrossRefGoogle Scholar
  25. Joerin F, Musy A (2000) Land management with GIS and multicriteria analysis. Inter Transact Operat Res 7:67–78. doi: 10.1111/j.1475-3995.2000.tb00185.x CrossRefGoogle Scholar
  26. Kamal M, Al-Harbi Al-Subhi (2001) Application of the AHP in project management. Intern J Project Manag 19:19–27. doi: 10.1016/S0263-7863(99)00038-1 CrossRefGoogle Scholar
  27. Kavvadias V, Doula MK, Komnitsas K, Liakopoulou N (2010) Disposal of olive oil wastes in evaporation ponds: effects on soil properties. J Hazard Mater 182:144–155. doi: 10.1016/j.jhazmat.2010.06.007 CrossRefGoogle Scholar
  28. Keen PGD (1987) Decision support systems: the next decade. Decis Support Syst 3:253–265. doi: 10.1016/0167-9236(87)90180-1 CrossRefGoogle Scholar
  29. Liu JG, Mason P, Hilton F, Lee H (2004) Detection of rapid erosion in SE Spain: a GIS approach based on ERS SAR coherence imagery. Photogramm Eng Remote Sens 70(10):1197–1285Google Scholar
  30. Malczewski J (1999) GIS and multicriteria decision analysis. Wiley, New YorkGoogle Scholar
  31. Malczewski J (2006) Ordered weighted averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability analysis. Intern J Appl Earth Observ Geoinform 8:270–277. doi: 10.1016/j.jag.2006.01.003 CrossRefGoogle Scholar
  32. Mamat NJZ, Daniel JK (2007) Statistical analyses on time complexity and rank consistency between singular value decomposition and the duality approach in AHP: a case study of faculty member selection. Math Comput Model 46:1099–1106. doi: 10.1016/j.mcm.2007.03.025 CrossRefGoogle Scholar
  33. Maystre LY, Lucien Y, Pictet J, Simos J (1994) Méthodes multicritères ELECTRE: description, conseils, pratique et cas d’application à la gestion environnementale. Presses polytechniques et universitaires romandes, Lausanne, p 319Google Scholar
  34. McNamara CJ, Anastasiou CC, O’Flaherty V, Mitchell R (2008) Bioremediation of olive mill wastewater. Inter Biodeter Biodegr 61:127–134. doi: 10.1016/j.ibiod.2007.11.003 CrossRefGoogle Scholar
  35. Mekki A, Dhouib A, Sayadi S (2009) Evolution of several soil properties following amendment with olive mill wastewater. Prog Nat Sci 19:1515–1521. doi: 1016/j.pnsc.2009.04.014 CrossRefGoogle Scholar
  36. Mustajoki J, Hämäläinem RP (2007) Smart-Swaps- A decision support system for multicriteria decision analysis with even swaps method. Decis Support Syst 44:313–325. doi: 10.1016/j.dss.2007.04.004 CrossRefGoogle Scholar
  37. Papadopoulos A, Karagiannidis A (2008) Application of the multi-criteria analysis method Electre III for the optimisation of decentralised energy systems. Intern J Manag Sci 36:766–776. doi: 10.1016/ Google Scholar
  38. Pereıra JMC, Duckstein L (1993) A multiple criteria decision-making approach to GIS-based land suitability evaluation. Inter J Geograph Inform Syst 75:407–424CrossRefGoogle Scholar
  39. Perez J, De la Rubia T, Moreno J, Marttinez J (1992) Phenolic content and antibacterial activity of olive oil waste waters. Environ Toxicol Chem 11:489–495. doi: 10.1002/etc.5620110406 CrossRefGoogle Scholar
  40. Pradhan B (2010) Use of GIS-based fuzzy logic relations and its cross application to produce landslide susceptibility maps in three test areas in Malaysia. Environ Earth Sci. doi: 10.1007/s12665-010-0705-1
  41. Rana G, Rinaldi M, Introna M (2003) Volatilisation of substances after spreading olive oil waste water on the soil in a Mediterranean environment. Agric Ecosyst Environ 96:49–58. doi: 10.1016/S0167-8809(03)00013-6 CrossRefGoogle Scholar
  42. Saadi I, Laor Y, Raviv M, Medina S (2007) Land spreading of olive mill wastewater: effects on soil microbial activity and potential phytotoxicity. Chemosphere 66:75–83. doi: 10.1016/j.chemosphere.2006.05.019 CrossRefGoogle Scholar
  43. Saaty TL (1977) A Scaling method for priorities in hierarchical structures. J Math Psychol 15:234–281. doi: 10.1016/0022-2496(77)90033-5 CrossRefGoogle Scholar
  44. Saaty TL (1980) The analytical hierarchy process. McGraw Hill, New YorkGoogle Scholar
  45. Saaty TL, Vargas LG (1991) Prediction, projection and forecasting. Kluwer Academic Publishers, DordrechtGoogle Scholar
  46. Sauri-Riancho MR, Cabanas-Vargas DD, Echeverrıa-Victoria M, Gamboa-Marrufo M, Centeno-Lara R, Mendez-Novelo RI (2011) Locating hazardous waste treatment facilities and disposal sites in the State of Yucatan, Mexico. Environ Earth Sci 63:351–362. doi: 10.1007/s12665-010-0706-0 CrossRefGoogle Scholar
  47. Saviozzi A, Levi Minzi R, Riffaldi R, Lupetti A (1991) Effetti dello spandimento di acque di vegetazione sul terreno agrario. Agrochimica 35:135–148Google Scholar
  48. Sayadi S, Zorgani F, Ellouz R (1996) Decolorization of olive mill wastewaters by free and immobilized Phanerochaete chrysosporium cultures: effect of the high molecular weight polyphenols. Appl Biochem Biotechnol 56:265–276. doi: 10.1007/BF02786957 CrossRefGoogle Scholar
  49. Sener B, Süzen ML, Doyuran V (2006) Landfill site selection by using geographic information systems. Environ Geol 49:376–388. doi: 10.1007/s00254-005-0075-2 Google Scholar
  50. S’habou R, Zairi M, Ben Dhia H (2005) Characterization and environmental impacts of olive oil wastewater disposal. Environ Technol 26:35–45CrossRefGoogle Scholar
  51. S’habou R, Zairi M, Kallel A, Aydi A, Ben Dhia H (2009) Assensing the effect of an olive mill wastewater evaporation pond in Sousse, Tunisia. Environ Geol 58:679–686. doi: 10.1007/s00254-008-1542-3 Google Scholar
  52. Van der Merwe JH (1997) GIS-aided land evaluation and decision-making for regulating urban expansion: a South African case study. Geo J 34:135–151. doi: 10.1023/A:1006871603701 Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Houda Sahnoun
    • 1
    Email author
  • Mohamed Moncef Serbaji
    • 2
  • Boubaker Karray
    • 3
  • Khaled Medhioub
    • 4
  1. 1.Faculté des sciences de Sfax (Unité de recherche: Etude et gestion des environnements urbains et côtiers), Office de la topographie et de la cartographieSfaxTunisia
  2. 2.Ecole Nationale d’Ingénieurs de Sfax (Unité de recherche: Etude et gestion des environnements urbains et côtiers)SfaxTunisia
  3. 3.Institut de l’olivierSfaxTunisia
  4. 4.Institut Préparatoire aux Etudes Ingénieurs de Sfax (Unité de recherche: Etude et gestion des environnements urbains et côtiers)SfaxTunisia

Personalised recommendations