Environmental Earth Sciences

, Volume 65, Issue 5, pp 1405–1414

A methodology for dealing with regional change in integrated water resources management

  • Jochen Schanze
  • Johanna Trümper
  • Cornelia Burmeister
  • Dirk Pavlik
  • Ivan Kruhlov
Special Issue

Abstract

The paper presents a methodology on how to consistently deal with the future change and management options in integrated water resources management (IWRM). It is based on a conceptual framework with a five step procedure for the formulation and analysis of a so-called ‘parameterised regional futures’. Developing and testing the approach for IWRM is realised for the upper part of the Western Bug River catchment (Ukraine). Special attention is paid to scenarios of change covering climate and land use. The future regional climate is downscaled with the model CCLM. Land cover is projected after retrospective change detection and the derivation of prospective algorithms. Parameters of the interrelations between land use and the water cycle are tackled through using the concept of the model PWF-LU. The methodology is currently being tested to analyse the impacts of mid-term regional change and management options on the water cycle of the catchment.

Keywords

Scenarios Climate change Land-use change River catchment 

References

  1. Alcamo J (2008) The SAS approach: combining qualitative and quantitative knowledge in environmental scenarios. In: Alcamo J (ed) Environmental futures: the practice of environmental scenario analysis. Elsevier, Amsterdam, pp 123–150Google Scholar
  2. Benestad RE, Hanssen-Bauer I, Chen D (2008) Empirical-statistical downscaling. World Scientific Publishing, SingaporeGoogle Scholar
  3. Blum A, Gruhler K, Thinh, NX (2010) Typenbildung. In: Blum A, Gruhler K (Hg) Typologien der gebauten Umwelt; Modellierung und Analyse der Siedlungsentwicklung mit dem Strukturtypenansatz. Shaker Verlag, Aachen, pp 11–18Google Scholar
  4. Burmeister C Untersuchungsansatz zur retrospektiven Analyse und szenariobasierten Projektion des gesamträumlichen Landbedeckungswandels am Beispiel des oberen Einzugsgebietes des Westlichen Bug (Ukraine) (in prep.)Google Scholar
  5. Breuer L, Eckhardt K, Frede H-G (2003) Plant parameter values for models in temperate climates. Ecol Model 169:237–293Google Scholar
  6. Chase TN, Pielke RA Sr, Kittel TGF, Nemani RR, Running SW (2000) Simulated impacts of historical land cover changes on global climate in northern winter. Clim Dynam 16:93–105CrossRefGoogle Scholar
  7. Christensen J, Hulme M, von Storch H et al (ed) (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Chapter 10, Cambridge University Press, Cambridge, United Kingdom, New York, NY, USA, pp 583–629Google Scholar
  8. Delfs J-O, Blumensaat F, Wang W, Krebs P, Kolditz O (2011) Coupling hydrogeological with surface runoff model in a Poltva case study in Western UkraineGoogle Scholar
  9. Ertel A-M, Lupo A, Scheifhacken N, Bodnarchuk T, Manturova O, Berendonk TU, Petzoldt T (2011) Heavy load and high potential: anthropogenic pressures and their impacts on the water quality along a lowland river (Western Bug, Ukraine). Environ Earth Sci. doi:10.1007/s12665-011-1289-0 (this issue)
  10. European Environment Agency (EEA) (2006) CLC2006 technical guidelines, EEA Report No. 17/2006, CopenhagenGoogle Scholar
  11. Fischer G, Shah M, Tubiello FN, van Velhuizen H (2005) Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080. Phil Trans R Soc B 360:2067–2083. doi:10.1098/rstb.2005.1744
  12. Fresco LO (1994) Imaginable futures, a contribution to thinking about land use planning. In: Fresco LO, Stroosnijder L, Bouma J, van Keulen H (eds) The future of the land: mobilising and integrating knowledge for land use options. Wiley, Chichester, pp 1–8Google Scholar
  13. Hall J (2009) Integrated assessment to support regional and local decison making. In: Wilson E (ed) Use of scenarios for climate change adaptation in spatial planning. In: Davoudi S, Crawford J, Mehmood A (2009) Planning for climate change—strategies for mitigation and adaptation for spatial planning. Earthscan, London, Washington DC, pp 236–248Google Scholar
  14. Hall JW, Evans EP, Penning-Rowsell EC, Sayers PB, Thorne CR, Saul AL (2003) Quantified scenario analysis of drivers and impacts of changing flood risk in England and Wales; 2030–2100. Glob Environ Chang B Environ Hazards 5(3–4):51–65CrossRefGoogle Scholar
  15. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. In: IEEE Transactions on Systems, Man and Cybernetics, vol SMC-3, no. 6, November 1973Google Scholar
  16. Herenchuk K (ed) (1972) Pryroda Lvivskoyi oblsti [Nature of Lviv Oblast]. Vydavnytstvo Lvivskoho Universytetu, Lviv (In Ukrainian)Google Scholar
  17. Hutter G, Schanze J (2008) Learning how to deal with uncertainty of flood risk in long-term planning. Int J River Basin Manag 6(2):175–184CrossRefGoogle Scholar
  18. Kalbacher T, Delfs J-O, Shao H, Wang W, Walther M, Samaniego L, Schneider C, Musolff A, Centler F Sun F, Hildebrandt A, Liedl R, Borchardt D, Krebs P, Kolditz O (2011) The IWAS-ToolBox: software coupling for an integrated water resources management. Environ Earth Sci. doi:10.1007/s12665-011-1270-y (this issue)
  19. Kalnay E, Cai M (2003) Impact of urbanization and land-use change on climate. Nature 432:528–531CrossRefGoogle Scholar
  20. Krouglov I (1999) The structure of the urban landscape. Acta Facultatis Rerum Naturalium Universitatis Ostraviensis: Geologie-Geographie 175:71–89Google Scholar
  21. Lu D, Mausel P, Brondizios E, Moran E (2004) Change detection techniques. Int J Remote Sens 25(12):2365–2407CrossRefGoogle Scholar
  22. Luther J, Schanze J (2009) Exploring and evaluating futures of riverine flood risk systems–the example of the Elbe River. In: Samuels P et al (eds) Flood risk management—research and practice. CRC Press, Boca Raton, pp 1753–1763Google Scholar
  23. Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni F (2006) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. PNAS 105(36):13252–13257. doi:10.1073/pnas.0805721105 CrossRefGoogle Scholar
  24. Meinel G, Hecht R, Herold H (2009) Analyzing building stock using topographic maps and GIS. Build Res Inform 37(5–6):468–482CrossRefGoogle Scholar
  25. Middelkoop H, Daamen K, Gellens D, Grabs W, Kwadijk JCJ, Lang H, Parmet BWAH, Schädler B, Schulla J, Wilke K (2001) Impact of climate change on hydrological regimes and water resources management in the Rhine Basin. Clim Chang 49(1–2):105–128. doi:10.1023/A:1010784727448 CrossRefGoogle Scholar
  26. Murray H, Lucieer A, Williams R (2010) Texture-based classification of sub-antarctic vegetation communities on Heard Island. Int J Appl Earth Observ Geoinform 12(3):138–149. doi:10.1016/j.jag.2010.01.006 CrossRefGoogle Scholar
  27. Nakicenovic N, Swart R (eds) (2000) Special report on emissions scenarios. IPCC, Cambridge University Press, UKGoogle Scholar
  28. Pavlik D, Soehl D, Pluntke T, Mykhnovych A, Bernhofer C (2011) Dynamic downscaling of global climate projections for Eastern Europe with a horizontal resolution of 7 km. Environ Earth Sci. doi:10.1007/s12665-011-1081-1 (this issue)
  29. Pielke RA Sr, Marland G, Betts RA, Chase TN, Eastman JL, Niles JO, Nyogi DS, Running SW (2002) The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases. Phil Trans R Soc Lond A 360:1705–1719CrossRefGoogle Scholar
  30. Pisinaras V, Petalas C, Gikas GD, Gemitzi A, Tsihrintzis VA (2010) Hydrological and water quality modeling in a medium-sized basin using the soil and water assessment tool (SWAT). Desalination 250(1):274–286CrossRefGoogle Scholar
  31. Reichler T, Kim J (2008) How well do coupled models simulate today’s climate? B Am Meteorol Soc 89:303–311CrossRefGoogle Scholar
  32. Rockel B, Will A, Hense A (2008) The Regional Climate Model COSMO-CLM (CCLM). Meteorol Z 17:347–348CrossRefGoogle Scholar
  33. Roeckner E, Baeuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Schlese U, Schulzweida U, Kirchner U, Manzini E, Rhodin A, Tompkins A (2003) The atmospheric general circulation model ECHAM5, Report No. 349, Max Planck Institute for Meteorology, HamburgGoogle Scholar
  34. Roth M, Nobis R, Stetsuik V, Kruhlov I (eds) (2008) Transformation process in the Western Ukraine—concept for sustainable land use. Weissensee Verlag Oekologie, BerlinGoogle Scholar
  35. Schanze J, Sauer A (2011) Parameterised regional futures: a policy-oriented scenario approach for regional climate change impact assessment and adaptation. Region Environ Chang (in prep.)Google Scholar
  36. Verburg PH, van de Steeg J, Veldkamp A, Willemen L (2009) From land cover change to land function dynamics: a major challenge to improve land characterization. J Environ Manag 90:1327–1335CrossRefGoogle Scholar
  37. Viner D (2002) A qualitative assessment of the sources of uncertainty in climate change impacts assessment studies. In: Beniston M (ed) Climatic change: implications for the hydrological cycle and for water management. Kluwer Academic Publishers, NetherlandsGoogle Scholar
  38. Wegehenkel M, Heinrich U, Uhlemann S, Dunger V, Matschullat J (2006) The impact of different spatial land cover data sets on the outputs of a hydrological model–a modelling exercise in the Ucker catchment, north-east Germany. Phys Chem Earth A/B/C 31(17):1075–1088CrossRefGoogle Scholar
  39. Zurek MB, Henrichs T (2007) Linking scenarios across geographical scales in international environmental assessments. Technol Forecast Soc Chang 74:1282–1295CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jochen Schanze
    • 1
    • 2
  • Johanna Trümper
    • 1
  • Cornelia Burmeister
    • 1
  • Dirk Pavlik
    • 3
  • Ivan Kruhlov
    • 4
  1. 1.Chair of Environmental Development and Risk ManagementTechnische Universität DresdenDresdenGermany
  2. 2.Leibniz Institute of Ecological Urban and Regional DevelopmentDresdenGermany
  3. 3.Chair of MeteorologyTechnische Universität DresdenDresdenGermany
  4. 4.Faculty of GeographyIvan Franko National University of LvivLivivUkraine

Personalised recommendations