Environmental Earth Sciences

, Volume 66, Issue 3, pp 793–807 | Cite as

Sources and behavior of arsenic and trace elements in groundwater and surface water in the Poopó Lake Basin, Bolivian Altiplano

  • Oswaldo Eduardo Ramos Ramos
  • Luis Fernando Cáceres
  • Mauricio Rodolfo Ormachea Muñoz
  • Prosun BhattacharyaEmail author
  • Israel Quino
  • Jorge Quintanilla
  • Ondra Sracek
  • Roger Thunvik
  • Jochen Bundschuh
  • Maria Eugenia García
Original Article


Water management in semiarid and arid catchments such as the Poopó Lake Basin requires improved understanding of the complex behavior of the various contaminants, which affect the drinking water quality and considered as crucial for sustainable development of the region. Mechanisms of arsenic (As) release in the surface and groundwater were studied. Hydrochemical data for surface water (4 samples) and groundwater (28 samples) were collected in a small watershed in the Poopó catchment at the highland of the Bolivian Andes (Altiplano). All of them show high electrical conductivity values and moderately oxidizing conditions. The surface water contains high concentration of sulfate and the trace elements As, Zn and Pb in the zone affected by acid mine drainage. There is a large variability of the concentration of As and of the trace elements in the groundwater in the five different regions within the Poopó catchment. The metal concentrations sensitive to changes of redox state and results of speciation modeling suggest that As (V) is a predominant aqueous species, which conforms to the prevailing oxidizing conditions in the shallow groundwater environment. Two generalized trends for As distribution were identified in groundwater: (a) high concentrations are found in the arid zone (100–250 μg/L) in the southern (region III) and in the northwestern (region V) regions, and (b) low concentrations (<50 μg/L) are found in the remaining part of the basin (region I, II and IV). However, the spatial distribution within these regions needs to be investigated further. A conclusion from the present study is that there are multiple sources of As as well as other trace elements (such as Cd, Mn and Zn) in the Poopó Lake Basin. Among the sources and the processes which led to the mobility of As and other trace metals in the region are: (a) weathering of sulfide minerals, (b) oxidation of pyrite and/or arsenopyrite in mineralized areas and (c) desorption from hydrous ferric oxide (HFO) surfaces. In non-mining areas, volcanic ash is suggested to be a significant source of As.


Bolivia Altiplano Groundwater Hydrochemistry Arsenic Trace elements Mobilization Drinking water quality 



This research was funded through Swedish International Development Cooperation Agency in Bolivia (Sida Contribution: 7500707606). We extend our sincere appreciation to Eduardo Palenque for the review of the earlier version of this manuscript and to Moises Calliconde for clarifying the electrochemical concepts. We gratefully acknowledge the analytical support from Elvira Guisbert and Liliana Flores at the Instituto de Investigaciones Quimicas, UMSA, La Paz and Ann Fylkner, Monica Löwen and Bertil Nilsson at the Department of Land and Water Resources Engineering, KTH Stockholm for the major ion analyses. Magnus Mörth at the Department of Geological Sciences, Stockholm University is acknowledged for the trace element analyses. The authors also acknowledge the support of the CAMINAR project (INCO-CT-2006-032539) funded by the International Cooperation section of the European Commission under the 6th Framework Programme. JB thanks the CYTED Proyect Red Temática 406RT0282 Iberoarsen and the National Science Council of Taiwan for the financial support. We deeply acknowledge Mr S. Jayagopal and Srikanth Reddy of the Springer Correction team for their editorial support.


  1. Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution. Balkema, Rotterdam, p 536CrossRefGoogle Scholar
  2. Argollo J, Mourguiart P (2000) Late quaternary climate history of the Bolivian Altiplano. Quat Int 72:37–51CrossRefGoogle Scholar
  3. Banks D, Markland H, Smith PV, Mendez C, Rodriguez J, Huerta A, Saether OM (2004) Distribution, salinity and pH dependence of elements in surface water of the catchment area of the Salars of Coipasa and Uyuni Bolivian Altiplano. J Geochem Explor 84:141–166CrossRefGoogle Scholar
  4. Bhattacharya P, Chatterjee D, Jacks G (1997) Occurrence of arsenic contaminated groundwater in alluvial aquifers from Delta Plains, Eastern India: options for safe drinking water supply. Int J Water Res Manag 13(1):79–92CrossRefGoogle Scholar
  5. Bhattacharya P, Frisbie SH, Smith E, Naidu R, Jacks G, Sarkar B (2002) Arsenic in the environment: a global perspective. In: Sarkar B (ed) Handbook of heavy metals in the environment. Marcell Dekker Inc., New York, pp 147–215Google Scholar
  6. Bhattacharya A, Routh J, Gunnar Jacks, Bhattacharya P, Mörth M (2006a) Environmental assessment of abandoned mine tailings in Adak, Västerbotten district (northern Sweden). Appl Geochem 21:1760–1780CrossRefGoogle Scholar
  7. Bhattacharya P, Claesson M, Bundschuh J, Sracek O, Fagerberg J, Jacks G, Martin R, Storniolo A, Thir J (2006b) Distribution and mobility of arsenic in the Río Dulce alluvial aquifers in Santiago del Estero Province, Argentina. Sci Total Environ 358:97–120CrossRefGoogle Scholar
  8. Bhattacharya P, von Brömssen M, Hasan MA, Jacks G, Ahmed KM, Sracek O, Jakariya M, Huq SMI, Naidu R, Smith E, Owens G (2008) Arsenic mobilisation in the Holocene flood plains in South-central Bangladesh: evidences from the hydrogeochemical trends and modeling results. In: Bhattacharya P, Ramanathan AL, Mukherjee AB, Bundschuh J, Chandrasekharam D, Keshari AK (eds) Groundwater for sustainable development: problems, perspectives and challenges. Taylor and Francis/A.A. Balkema, pp 283–299. doi: 10.1201/9780203894569.ch26)
  9. Bothe JV, Brown PW (1999) The stabilities of calcium arsenates. J Hazard Mater 69(2):197–207CrossRefGoogle Scholar
  10. Bundschuh J, Farias B, Martin R, Storniolo A, Bhattacharya P, Cortes J, Bonorino G, Albouy R (2004) Groundwater arsenic in the Chaco-Pampean Plain, Argentina: case study from Robles County, Santiago del Estero Province. Appl Geochem 19:231–243CrossRefGoogle Scholar
  11. Bundschuh J, Pérez Carrera A, Litter MI (2008) Distribución del arsénico en las regiones ibérica e iberoamericana. Buenos Aires, Argentina: Editorial Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, 2008Google Scholar
  12. Bundschuh J, García ME, Birkle P, Cumbal LH, Bhattacharya P (2009) Occurence, health effects and remediation of arsenic in groundwaters of Latin America. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwater of Latin America—Occurrence, health impact and remediation. Interdisciplinary book series: “Arsenic in the environment”, vol 1. CRC Press/Balkema, Leiden, pp 3–16. ISBN: 978-0-415-40771-7Google Scholar
  13. Bundschuh J, Litter M, Ciminelli V, Morgada ME, Cornejo L, Garrido Hoyos S, Hoinkis J, Alarcón-Herrera MT, Armienta MA, Bhattacharya P (2010) Emerging mitigation needs and sustainable options for solving the arsenic problems of rural and isolated urban areas in Latin America—a critical analysis. Water Res 44(19):5328–5345. doi: 10.1016/j.watres.2010.04.001 Google Scholar
  14. Cáceres LF, Choque RR, Ramos O, Choque R (2004) Trace elements specification on sediments of the Poopó Lake (Especiación de elementos traza en sedimentos del Lago Poopó). Revista Boliviana de Química 21(1):42–48Google Scholar
  15. Calizaya A (2009) Water resources management efforts for best water allocation in the lake Poopó basin, Bolivia. Report 1048, Lund University, LundGoogle Scholar
  16. Dzombak D, Morel FM (1990) Surface complexation modeling, hydrous ferric oxide. Wiley, New YorkGoogle Scholar
  17. Fornari M, Risacher F, Féraud G (2001) Dating of paleolakes in the central Altiplano of Bolivia. Paleogeogr Paleoclimatol Paleoecol 172:269–282CrossRefGoogle Scholar
  18. Garcia Moreno ME (2006) Transport of arsenic and heavy metals to lake Poopó Bolivia. Department of Water Resources Engineering, Lund University, LundGoogle Scholar
  19. Hasan MA, Matin Ahmed K, Sracek O, Bhattacharya P, von Brömssen M, Broms S, Fogelström J, Mazumder ML, Jacks G (2007) Arsenic in shallow groundwater of Bangladesh: investigations from three different physiographic setting. Hydrogeol J 15:1507–1522CrossRefGoogle Scholar
  20. Lilja A, Linde G (2006) Occurrence and distribution of heavy metals in three rivers on the Bolivian high plateau. Lund Institute of technology, Lund University, LundGoogle Scholar
  21. Minchin J (1882) Notes on a journey through part of the Andean tableland of Bolivia. Proc R Geogr Soc 4:67Google Scholar
  22. PAADO (2005) Plan de Acción Ambiental del Departamento de Oruro. Prefectura de Oruro. BoliviaGoogle Scholar
  23. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Report of investigation, US Geological Survey and Water Resources 99-4259, 312 pGoogle Scholar
  24. Pillco R, Bengtsson L (2006) Long-term and extreme water level variations of the shallow Lake Poopó, Bolivia. Hydrol Sci 51(1)Google Scholar
  25. Pillco R, Calizaya A (2008) Hydrology and water resources in the Poopó and Uru Uru lakes basin (Hidrología y Recursos Hídricos en la Cuenca de los Lagos Poopó y Uru Uru). Bases Técnicas para el Plan de Manejo del Sitio Ramsar Lagos Poopó y Uru Uru, Oruro, Bolivia. Ministerio de Desarrollo Rural Agropecuario y Medio Ambiente. La Paz, BoliviaGoogle Scholar
  26. Proyecto Piloto Oruro (PPO) (1992) Metal contents in Lake Sediments, Totora and Myriophyllum (PPO-013). Ministerio de Desarrollo Sostenible y Medio Ambiente, Secretaria de Medio Ambiente, Swedish Geological AB, La Paz, Bolivia, 47 pGoogle Scholar
  27. Proyecto Piloto Oruro (PPO) (1996a) Impact of the mining and industrial contamination in groundwater, (Impacto de la contaminación minera e industrial sobre aguas subterráneas). R-BO-E-9.45-9702-PPO 9616. Ministerio de Desarrollo Sostenible y Medio Ambiente, Secretaria de Medio Ambiente, Swedish Geological AB, La Paz, BoliviaGoogle Scholar
  28. Proyecto Piloto Oruro (PPO) (1996b) Mining impact and the mineral processing in rivers and lakes (Impacto de la minera y el procesamiento de minerales en cursos de aguas y lagos). R-BO-E-9.45-9703-PPO 9612. Ministerio de Desarrollo Sostenible y Medio Ambiente, Secretaria de Medio Ambiente, Swedish Geological AB, La Paz, BoliviaGoogle Scholar
  29. Proyecto Piloto Oruro (PPO) (1996c) Environmental issue of the metals and non metals in the Desaguadero hydrologic system, (Aspectos ambientales de los metales y metaloides en el sistema hidrológico del Desaguadero) (PPO-010). Ministerio de Desarrollo Sostenible y Medio Ambiente, Secretaria de Medio Ambiente, Swedish Geological AB, La Paz, Bolivia, 97 pGoogle Scholar
  30. Proyecto Piloto Oruro (PPO) (1997) Final report. Findings, recommendations and the environmental management plan. R-BO-E-9.45-9706-PPO9701. Ministerio de Desarrollo Sostenible y Medio Ambiente, Secretaria de Medio Ambiente, Swedish Geological AB, La Paz, BoliviaGoogle Scholar
  31. Quino I (2006) Groundwater quality determination on the North and East regions of the Poopó Lake, (Determinación de la calidad de aguas subterráneas en la región norte y este del lago Poopó), Thesis, UMSA, La Paz, BoliviaGoogle Scholar
  32. Ravenscroft P, Mcarthur JM (2004) Mechanism of regional enrichment of groundwater by boron, USA. Appl Geochem 19:1413–1430CrossRefGoogle Scholar
  33. Revollo M (2001) Management issues in the Lake Titicaca and Lake Poopo system: importance of developing a water budget. Lakes Reserv Res Manag 6:225–229CrossRefGoogle Scholar
  34. Schnoor JL (1996) Environmental modeling: fate and transport of pollutants in water, air and soil. Wiley, New York, p 682Google Scholar
  35. Selander L, Svan P (2007) Occurrence and distribution of heavy metals in lake Poopó, Bolivia. Department of Chemical and Water Resources Engineering, Lund University, LundGoogle Scholar
  36. SERGEOMIN (1999) Renewable natural (water) and non-renewable (minerals and fuels) resources inventory in Oruro, (Inventariación de recursos naturales renovables (hídricos) y no renovables (minerales e hidrocarburos) del departamento de Oruro). Boletín del Servicio Nacional de Geología y Minería Nº 24, 44 pp, La Paz, BoliviaGoogle Scholar
  37. Smedley PL, Kinniburgh DG (2002) A review of the source, behavior and distribution of arsenic in natural waters. Appl Geochem 17:517–568CrossRefGoogle Scholar
  38. Smedley PL, Nicolli HB, Macdonald DMJ, Barros AJ, Tullio JO (2002) Hydrogeochemistry of arsenic and other inorganic constituents in groundwater from La Pampa, Argentina. Appl Geochem 17:259–284CrossRefGoogle Scholar
  39. Smedley PL, Kinniburgh DG, Macdonald DMJ, Nicolli HB, Barros AJ, Tullio JO, Pearce JM, Alonso MS (2005) Arsenic associations in sediments from the loess aquifer of the la Pampa, Argentina. Appl Geochem 20:989–1016CrossRefGoogle Scholar
  40. Srivastava SK, Ramanathan AL (2008) Hydrogeochemical studies around the Bhalswa landfill in Delhi, India. Groundwater for sustainable development. Taylor and Francis/Balkema Publish, ISGSD Special Publication, London, pp 69–85Google Scholar
  41. TDPS (1993) Climatología del Sistema de los lagos Titicaca, Desaguadero, Poopó y Salares Coipasa y Uyuni. comision de comunidades de Europa-Republicas del Perú y Bolivia, convenios ALA/86/03 y ALA/87/23. LP, BoliviaGoogle Scholar
  42. USGS and GEOBOL (1992) Geology and mineral resources of the altiplano and cordillera occidental, Bolivia. United States Geological Survey vol 1975, 365 pGoogle Scholar
  43. Whiting KS (1992) The thermodynamics and geochemistry of As with the application to subsurface waters at the Sharon Steel Superfund Site Midvale, Utah. MSc thesis, Colorado School of MinesGoogle Scholar
  44. WHO (1993) Guidelines for drinking-water quality. Recommendation vol I, 2nd edn. WHO, GenevaGoogle Scholar
  45. YPFB and GEOBOL (1996) Geological map of Bolivia (Mapa geologic de Bolivia), scale 1:1,000,000 with accompanying memorandum. Yacimientos Petroliferos Fiscales de Bolivia and Servicio Geológico de Bolivia, 27 pGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Oswaldo Eduardo Ramos Ramos
    • 1
    • 2
    • 3
  • Luis Fernando Cáceres
    • 4
  • Mauricio Rodolfo Ormachea Muñoz
    • 1
    • 2
  • Prosun Bhattacharya
    • 1
    Email author
  • Israel Quino
    • 3
  • Jorge Quintanilla
    • 2
  • Ondra Sracek
    • 5
    • 6
  • Roger Thunvik
    • 1
  • Jochen Bundschuh
    • 1
    • 7
    • 8
  • Maria Eugenia García
    • 2
  1. 1.KTH-International Groundwater Arsenic Research Group, Department of Land and Water Resources EngineeringRoyal Institute of TechnologyStockholmSweden
  2. 2.Instituto de Investigaciones Químicas (IIQ)Universidad Mayor de San AndrésLa PazBolivia
  3. 3.Especialidades Químicas I+D+ILa PazBolivia
  4. 4.Monitoreo Ambiental, Dirección de Medio AmbienteCorporación Minera de Bolivia (COMIBOL)La PazBolivia
  5. 5.OPV (Protection of Groundwater Ltd)Praha 6Czech Republic
  6. 6.Department of Geology, Faculty of SciencePalacký UniversityOlomoucCzech Republic
  7. 7.Institute of Applied ResearchKarlsruhe University of Applied ScienceKarlsruheGermany
  8. 8.Department of Earth SciencesNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations