Skip to main content

Coupling hydrogeological with surface runoff model in a Poltva case study in Western Ukraine

Abstract

This paper presents the hydrological coupling of the software framework OpenGeoSys (OGS) with the EPA Storm Water Management Model (SWMM). Conceptual models include the Saint Venant equation for river flow, the 2D Darcy equations for confined and unconfined groundwater flow, a two-way hydrological coupling flux in a compartment coupling approach (conductance concept), and Lagrangian particles for solute transport in the river course. A SWMM river–OGS aquifer inter-compartment coupling flux is examined for discharging groundwater in a systematic parameter sensitivity analysis. The parameter study involves a small perturbation (first-order) sensitivity analysis and is performed for a synthetic test example base-by-base through a comprehensive range of aquifer parametrizations. Through parametrization, the test cases enables to determine the leakance parameter for simulating streambed clogging and non-ocillatory river-aquifer water exchange rates with the sequential (partitioned) coupling scheme. The implementation is further tested with a hypothetical but realistic 1D river–2D aquifer model of the Poltva catchment, where discharging groundwater in the upland area affects the river–aquifer coupling fluxes downstream in the river course (propagating feedbacks). Groundwater contribution in the moving river water is numerically determined with Lagrangian particles. A numerical experiment demonstrates that the integrated river–aquifer model is a serviceable and realistic constituent in a complete compartment model of the Poltva catchment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Abbott MB, Bathurst JC, Cunge JA, O’Connell PE, Rasmussen J (1986) An introduction to the European hydrological system—Système Hydrologique Européen, ‘SHE’, 1: history and philosophy of a physically-based, distributed modelling system. J Hydrol 87(1):45–59

    Article  Google Scholar 

  • Abdul AS, Gillham RW (1989) Field studies of the effects of the capillary fringe on streamflow generation. J Hydrol 112:1–18

    Article  Google Scholar 

  • Andersen MS, Acworth RI (2009) Stream-aquifer interactions in the Maules Creek catchment, Namoi Valley, New South Wales, Australia. Hydrogeol J. doi:10.1007/s10040-009-0500-9

  • Anderson MG, Burt PT (1978) The role of topography in controlling throughflow generation. Earth Surf Proc 3:331–344

    Article  Google Scholar 

  • Bailly-Comte V, Jourde H, Pistre S (2009) Conceptualization and classification of groundwater–surface water hydrodynamic interactions in karst watersheds: case of the karst watershed of the Coulazou River (Southern France). J Hydrol 376:456–462

    Article  Google Scholar 

  • Berkowitz B, Kosakowski G, Margolin G, Scher H (2001) Application of continuous time random walk theory to tracer test measurements in fractured and heterogeneous porous media. Groundwater 39(4):593–604

    Google Scholar 

  • Beven KJ (2002) Towards a coherent philosophy for modelling the environment. Proc R Soc Lond A 458:1–20

    Article  Google Scholar 

  • Beven KJ, Kirkby MJ (1979) A physically based variable contributing area model of basin hydrology. Hydrol Sci Bull 24(1):43–69

    Article  Google Scholar 

  • Beyer C, Konrad W, Rügner H, Bauer S, Liedl R, Grathwohl P (2003) Model-based prediction of long-term leaching of contaminants from secondary materials in road constructions and noise protection dams. Waste Manag 29(2):839–850

    Article  Google Scholar 

  • Bhallamudi SM, Panday S, Huyakorn PS (2003) Sub-timing in fluid flow and transport simulations. Adv Water Resour 26(5):477–489

    Article  Google Scholar 

  • Bitteli M, Tomei F, Pistocchi A, Flury M, Boll J, Brooks ES, Antolini G (2010) Development and testing of a physically based, three-dimensional model of surface and subsurface hydrology. Adv Water Resour 33:106–122

    Article  Google Scholar 

  • Blumensaat F, Trackner J, Hoeft S, Krebs P (2009) Quantifying effects of interacting optimisation measures in urban drainage systems. Urban Water J 6(2):93–105

    Article  Google Scholar 

  • Blumensaat F, Wolfram M, Krebs P (2011) Sewer model development under minimum data requirements. J Environ Earth Sci. doi:10.1007/s12665-011-1146-1 (this issue)

  • Böhm U, Keuler K, Österle H, Kücken M, Hauffe D (2008) Quality of a climate reconstruction for the CADSES region. MetZ special issue Regional climate modeling with COSMO-CLM (CCLM) 17(8):477–485

  • Botter G, Bertuzzo E, Rinaldo A (2010) Transport in the hydrologic response: travel time distributions, soil moisture dynamics, and the old water paradox. Water Resour Res 46:W03514. doi:10.1029/2009WR008371

    Article  Google Scholar 

  • Boussinesq J (1904) Recherches théoriques sur l’écoulement des nappes d’eau infiltrées dan le sol et sur le débit des sources. J Math Pures Appl 10:5–78

    Google Scholar 

  • Breuer L, Huisman JA, Willems P, Bormann H, Bronstert A, Croke BFW, Frede H-G, Gräff T, Hubrechts L, Jakeman AJ, Kite G, Lanini J, Leavesley G, Lettenmaier DP, Lindström G, Seibert J, Sivapalan M, Viney NR (2009) Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: model intercomparison with current land use. Adv Water Resour 32(2):129–146

    Article  Google Scholar 

  • Brookfield AE, Sudicky EA, Park YJ, Conant B (2009) Thermal transport modelling in a fully integrated surface/subsurface framework. Hydrol Process 23(15):2150–2164

    Article  Google Scholar 

  • Brunner P, Cook PG, Simmons CT (2009) Hydrologic controls on disconnection between surface water and groundwater. Water Resour Res 45. doi:10.1029/2008WR006953

  • Butler JJ, Zlotnik VA, Tsou MS (2001) Drawdown and stream depletion produced by pumping in the vicinity of a finite-width stream of shallow penetration. Groundwater 36(5):651–659

    Google Scholar 

  • Buttle JM, Vonk AM, Taylor CH (1995) Applicability of isotopic hydrograph separation in a suburban basin during snowmelt. Hydrol Process 9:197–211

    Article  Google Scholar 

  • Cacuci DG, Weber CF, Oblov EM, Marable JH (1980) Sensitivity theory for general systems of nonlinear equations. Nucl Sci Eng 75:88–110

    Google Scholar 

  • Camporese M, Paniconi C, Puti M, Orlandi S (2010) Sensitivity theory for general systems of nonlinear equations. Water Resour Res 46. doi:10.1029/2008WR007536

  • Cardenas MB, Wilson JL (2007) Effects of current-bed form induced fluid flow on the thermal regime of sediments. Water Resour Res 43:W08431. doi:10.1029/2006WR005343

    Article  Google Scholar 

  • Centler F, Shao H, deBiase C, Park C-H, Regnier P, Kolditz O, Thullner M (2010) GeoSysBRNS—a flexible multidimensional reactive transport model for simulating subsurface processes. Comput Geosci 36:397–405

    Article  Google Scholar 

  • Chen J-W, Hsieh H-H, Yeh H-F, Lee C-H (2010) The effect of the variation of river water levels on the estimation of groundwater recharge in the Hsinhuwei River, Taiwan. Environ Earth Sci 59:1297–1307

    Article  Google Scholar 

  • Chen X, Chen X (2003) Sensitivity analysis and determination of streambed leakance and aquifer hydraulic properties. J Hydrol 284:270–284

    Article  Google Scholar 

  • Christensen S (2000) On the estimation of stream flow depletion parameters by drawdown analysis. Groundwater 38(5):726–734

    Google Scholar 

  • Darcy HPG (1856) Les Fontaines Publiques de la Ville de Dijon. Victor Dalmont, Paris

    Google Scholar 

  • Dawson C (2008) A continuous/discontinuous Galerkin framework for modeling coupled subsurface and surface water flow. Comput Geosci 12:451–472

    Article  Google Scholar 

  • de Dreuzy J-R, de Boiry P, Pichot G, Davy P (2010) Use of power averaging for quantifying the influence of structure organization on permeability upscaling in on-lattice networks under mean parallel flow. Water Resour Res 46:W08519. doi:10.1029/2009WR008769

    Article  Google Scholar 

  • Delfs J-O, Kalbus E, Park C-H, Kolditz O (2009) A physically based model concept for transport modelling in coupled hydrosystems. Grundwasser 14(3):219–235

    Article  Google Scholar 

  • Delfs J-O, Park C-H, Kolditz O (2009) A sensitivity analysis of Hortonian flow. Adv Water Resour 32(9):1386–1395

    Article  Google Scholar 

  • Dunne T, Black R (1970) Partial area contributions to storm runoff in a small new England watershed. Water Resour Res 6:1296–1311

    Article  Google Scholar 

  • Ebel BA, Mirus BA, Heppner CS, VanderKwaak JE, Loague K (2009) First-order exchange coefficient coupling for simulating surface water-groundwater interactions: parameter sensitivity and consistency with a physics-based approach. Hydrol Process 23:1949–1959

    Article  Google Scholar 

  • Engelhardt I, Piepenbrink M, Trauth N, Stadler S, Kludt C, Schulz M, Schüth C, Ternes TA (2010) Comparison of tracer methods to quantify hydrodynamic exchange within the hyporheic zone. J Hydrol 400(1–2):255–266

    Google Scholar 

  • Ertel A, Lupo A, Scheifhacken N, Bodnarchuk T, Manturova Berendonk T, Petzoldt T (2011) Heavy load and high potential. Anthropogenic pressures and their impacts on the water quality along a lowland river (Western Bug, Ukraine). Environ Earth Sci. doi:10.1007/s12665-011-1289-0 (this issue)

  • Ferrari S, Saleri F (2004) A new two-dimensional shallow water model including pressure effects and slow varying bottom topography. Math Model Numer Anal 38(2):211–234

    Article  Google Scholar 

  • Freeze RA, Harlan RL (1969) Blueprint for a physically based, digitally-simulated hydrological response model. J Hydrol 9:237–258

    Article  Google Scholar 

  • Frei S, Fleckenstein JH, Kollet SJ, Maxwell RM (2009) Patterns and dynamics of river–aquifer exchange with variably-saturated flow using a fully-coupled model. J Hydrol 375(3–4):383–393

    Article  Google Scholar 

  • Gaukroger AM, Werner AD (2011) On the Panday and Huyakorn surface–subsurface hydrology test case: analysis of internal flow dynamics. Hydrol Process 25:2085–2093

    Article  Google Scholar 

  • Gerke HH, vanGenuchten MT (1993) A dual-porosity model for simulating preferential movement of water and solutes in structured porous media. Water Resour Res 29:305–319

    Article  Google Scholar 

  • Green WH, Ampt GA (1911) Studies on soil physics: 1. Flow of air and water through soils. J Agric Sci 4:1–24

    Article  Google Scholar 

  • Griggs JE, Peterson FL (1993) Groundwater-flow dynamics and development strategies at the atoll scale. Groundwater 31(2):209–220

    Google Scholar 

  • Grundmann J, Schütze NS, Schmitz G-H, Al Shaqsi S (2011) Towards an integrated arid zone water management using simulation based optimisation. Environ Earth Sci. doi:10.1007/s12665-011-1253-z (this issue)

  • Hantush MS (1965) Wells near streams with semi-pervious beds. J Geophys Res 70(2):2829–2838

    Article  Google Scholar 

  • Hartwig M, Theuring P, Rode M, Borchardt D (2011) Sources of suspended sediments and its implications on ecosystem functions in the Kharaa river (Mongolia). Environ Earth Sci. doi:10.1007/s12665-011-1198-2 (this issue)

  • Hewlett JD, Hibbert AR (1967) Factors affecting the response of small watersheds to precipitation in humid areas. In: Proceedings of the international symposium on forest hydrology, pp 275–290

  • Horlemann L, Dombrowsky I (2011) Institutionalizing IWRM in developing and transition countries—the case of Mongolia. Environ Earth Sci. doi:10.1007/s12665-011-1213-7 (this issue)

  • Horton RE (1940) An approach toward physical interpretation of infiltration capacity. Soil Sci Soc Am 5:399–417

    Article  Google Scholar 

  • Hoteit H, Mose R, Younes A, Lehmann F, Ackerer P (2002) Three-dimensional modeling of mass transfer in porous media using the mixed hybrid finite elements and the random-walk methods. Math Geol 34(4):435–456

    Article  Google Scholar 

  • Hunt B (1999) Unsteady stream depletion from groundwater pumping. Groundwater 37(1):98–102

    Google Scholar 

  • Hunt B, Weir J, Clausen B (2001) A stream depletion field experiment. Groundwater 39(2):283–289

    Google Scholar 

  • Ibisch RB, Borchardt D, Seydell I (2009) Influence of periphyton biomass dynamics on biological colmation processes in the hyporheic zone of a gravel bed river (River Lahn, Germany). Fundam Appl Limnol 61:67–81

    Google Scholar 

  • Ivanov VY, Bras RL, Vivoni ER (2008) Vegetation-hydrology dynamics in complex terrain of semiarid areas: 1. A mechanistic approach to modeling dynamic feedbacks. Water Resour Res 44:W03429. doi:10.1029/2006WR005588

    Article  Google Scholar 

  • Jones JP, Sudicky EA, Brookfield AE, Park YJ (2006) An assessment of the tracer-based approach to quantifying groundwater contributions to streamflow. Water Resour Res 42:W02407

    Article  Google Scholar 

  • Kabala ZJ (2001) Sensitivity analysis of a pumping test on a well with wellbore storage and skin. Adv Water Resour 24(5):483–504

    Article  Google Scholar 

  • Kabala ZJ, Milly PCD (1990) Sensitivity analysis of flow in unsaturated heterogeneous porous media: theory, numerical model, and its verification. Water Resour Res 26(4):593–610

    Google Scholar 

  • Kalbacher T, Kolditz O (2011) The IWAS toolbox: Software coupling for integrated water resources management. Environ Earth Sci. doi:10.1007/s12665-011-1270-y (this issue)

  • Kalbacher T, Schneider CL, Wang W, Hildebrandt A, Attinger S, Kolditz O (2011) Parallelized modelling of soil-coupled 3d water uptake of multiple root systems with automatic adaptive time step control. Vadose Zone J. doi:10.2136/vzj2010.0099

  • Kalbus E, Kalbacher T, Kolditz O, Krüger E, Seegert J, Teutsch G, Borchardt D, Krebs P (2011) IWAS—integrated water resources management under different hydrological, climatic and socio-economic conditions. Environ Earth Sci. doi:10.1007/s12665-011-1330-3 (this issue)

  • Kampf SK, Burges SJ (2007) A framework for classsifying and comparing distributed hillslope and catchment hydrologic models. Water Resour Res 43:W05423. doi:10.1029/2006WR005370

    Article  Google Scholar 

  • Karpf C, Krebs P (2011) Quantification of groundwater infiltration and surface water inflows in urban sewer networks based on a multiple model approach. Water Res 45(10):3129–3136

    Article  Google Scholar 

  • Kirchner JW (2003) A double paradox in catchment hydrology and geochemistry. Hydrol Process 17:871–874

    Article  Google Scholar 

  • Kolditz O, Delfs J-O, Bürger CM, Beinhorn M, Park C-H (2008) Numerical analysis of coupled hydrosystems based on an object-oriented compartment approach. J Hydroinf 10(3):227–244

    Article  Google Scholar 

  • Kolditz O, Du Y, Bürger CM, Delfs J-O, Kuntz D, Beinhorn M, Hess M, Wang W, van der Grift B, teStroet C (2007) Development of a regional hydrologic soil model and application to the Beerze-Reusel drainage basin. J Environ Pollut 148:855–866

    Article  Google Scholar 

  • Kolditz O, Shao H (2008) (eds) GeoSys/RockFlow—developer benchmark book-V.4.7. Technical report 15, Helmholtz Centre for Environmental Research, UFZ Leipzig, Germany

  • Kollet SJ, Maxwell RM (2006) Integrated surface-groundwater flow modeling: a free-surface overland flow boundary condition in a parallel groundwater flow model. Adv Water Resour 29(7):945–958

    Article  Google Scholar 

  • Kollet SJ, Maxwell RM, Woodward CW, Smith S, Vanderborgth J, Vereecken H, Simmer C (2010) Proof of concept of regional scale hydrologic simulations at hydrologic resolution utilizing massively parallel computer resources. Water Resour Res 46:W04201. doi:10.1029/2009WR008730

    Article  Google Scholar 

  • Krause S, Bronstein A, Zehe E (2007) Groundwater-surface water interactions in a North German lowland floodplain—implications for the river discharge dynamics and riparian water balance. J Hydrol 347:404–417

    Article  Google Scholar 

  • Leidel M, Niemann S, Hagemann N (2011) Capacity development as key factor for integrated water resources management (IWRM)—improving water management in the Western Bug River Basin, Ukraine. Environ. Earth Sci. doi:10.1007/s12665-011-1223-5 (this issue)

  • Lemieux JM, Sudicky EA, Peltier WR, Tarasov L (2008) Simulating the impact of glaciations on continental groundwater flow systems I. Relevant processes and model formulation. J Geophys Res. doi:10.1029/2007JF000928

  • LeVeque RJ (2002) Finite volume methods for hyperbolic problems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Li Q, Unger A, Sudicky E (2008) Simulating the multi-seasonal response of a large-scale watershed with a 3D physically-based hydrologic model. J Hydrol 357(3–4):317–336

    Article  Google Scholar 

  • Lindgren GA, Destouni G, Miller AV (2004) Solute transport through the integrated groundwater-stream system of a catchment. Water Resour Res 40:W03511. doi:10.1029/2003WR002765

    Article  Google Scholar 

  • Lorz C, Abbt-Braun G, Bakker F, Borges P, Börnick H, Fortes L, Frimmel FH, Gaffron A, Hebben N, Höfer R, Makesching F, Neder K, Roig LH, Steiniger B, Strauch M, Walde D, Wei H, Worch E, Wummel J (2011) Challenges of an integrated water resource management for the Distrito Federal, Western Central Brazil—climate, land use and water resources. Environ. Earth Sci. doi:10.1007/s12665-011-1219-1 (this issue)

  • Mannina G, Viviani G (2010) Receiving water quality assessment: comparison between simplified and detailed integrated urban modelling approaches. Water Sci Technol 62(10):2301–2312

    Article  Google Scholar 

  • Manning R (1891) On the flow of water in open channels and pipes. Trans Inst Civ Eng Ireland 20:161–207

    Google Scholar 

  • Marino MA (1975) Digital simulation model of aquifer response to stream discharge fluctuation. J Hydrol 25:51–58

    Article  Google Scholar 

  • Maxwell RM, Kollet SJ (2008) The interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nat Geosci 1:665–669

    Article  Google Scholar 

  • Mazzilli N, Guinot V, Jourde H (2010) Sensitivity analysis of two-dimensional steady-state aquifer flow equations. Implications for groundwater flow model calibration and validation. Adv Water Res 33(8):905–922

    Article  Google Scholar 

  • McCuen RH (1973) The role of sensitivity analysis in hydrologic modeling. J Hydrol 18(1):37–53

    Article  Google Scholar 

  • McDonnel JJ (1990) Conceptualizing lateral preferential flow and flow networks and simulating the effects on gauged and ungauged hillslopes. Water Resour Res 26(4):2821–2832

    Article  Google Scholar 

  • McGlynn BL, McDonnel JJ (2003) Quantifying the relative contributions of riparian and hillslope zones to catchment runoff. Water Resour Res 11:1310. doi:10.1029/2003WR002091

    Article  Google Scholar 

  • Miglio E, Quarteroni A, Saleri F (2003) Coupling of free surface and groundwater flows. Comput Fluids 32(1):73–83

    Google Scholar 

  • Mittchel VG, Mein RG, McMahon TA (2001) Modelling the urban water cycle. Env Model Softw 16:615–629

    Article  Google Scholar 

  • Morita M, Yen BC (2002) Modeling of conjunctive two-dimensional surface-three-dimensional subsurface flows. J Hydraul Eng 128(2):184–200

    Article  Google Scholar 

  • Muleta MK, Nicklow JW (2005) A global sensitivity analysis tool for the parameters of multi-variable catchment models. J Hydrol 306(1–4):127–145

    Article  Google Scholar 

  • O’Connor T, Rossi J (2009) Monitoring of a best management practice wetland before and after maintenance. J Hydraul Eng 135(11):1145–1154

    Google Scholar 

  • Osman YZ, Bruen MP (2002) Modelling stream-aquifer seepage in an alluvial aquifer: an improved loosing-stream package of MODFLOW. J Hydrol 264:69–86

    Article  Google Scholar 

  • Owen SJ, Jones NL, Holland JP (1996) A comprehensive modeling environment for the simulation of groundwater flow and transport. Eng Comput 12:235–242

    Article  Google Scholar 

  • Panday S, Huyakorn PS (2004) A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow. Adv Water Resour 27:361–382

    Article  Google Scholar 

  • Park C-H, Beyer C, Bauer S, Kolditz O (2008) Using global node-based velocity in random walk particle tracking in variably saturated porous media: application to contaminant leaching from road constructions. Environ Geol 55:755–766

    Article  Google Scholar 

  • Park Y-J, Sudicky EA, Panday S (2008) Application of implicit sub-time stepping to simulate flow and transport in fractured porous media. Adv Water Resour 31(7):995–1003

    Article  Google Scholar 

  • Park Y-J, Sudicky EA, Panday S, Matanga G (2009) Implicit sub-time stepping for solving the nonlinear equations of flow in an integrated surface–subsurface system. Vadose Zone J. 8(4). doi:10.2136/vzj2009.001

  • Pavlik D, Söhl D, Pluntke T, Mykhnovych A, Bernhofer C (2011) Dynamic downscaling of global climate projections for Eastern Europe with a horizontal resolution of 7 km. Environ Earth Sci. doi:10.1007/s12665-011-1081-1 (this issue)

  • Pfletschinger H, Engelhardt I, Piepenbrink M, Königer F, Schuhmann R, Kallioras A, Schüth C (2011) Soil column experiments to quantify vadose zone water fluxes in arid settings. Environ Earth Sci. doi:10.1007/s12665-011-1257-8 (this issue)

  • Philip JR (1957) The theory of infiltration: 6. Effect of water depth over soil. Soil Sci 85:278–286

    Article  Google Scholar 

  • Pichot G, Erhel J, Dreuzy JR (2010) A mixed hybrid mortar method for solving flow in discrete fracture networks. Appl Anal 89((10):1629–1643

    Article  Google Scholar 

  • Ponce VM, Ruh-Ming L, Simmons DB (1978) Applicability of kinematic and diffusion models. J Hydraul Div ASCE 104:353–360

    Google Scholar 

  • Qu Y, Duffy CJ (2007) A semidiscrete finite volume formulation for multiprocess watershed simulation. Water Resour Res 43:W08419. doi:10.1029/2006WR005752

    Article  Google Scholar 

  • Rauch W, Bertrand-Krajewski JL, Krebs P, Mark O, Schilling W, Schütze M, Vanrolleghem PA (2002) Determinisitic modelling of integrated urban drainage systems. Water Sci Technol 45(3):81–94

    Google Scholar 

  • Ray AB, Selvakumar A, Tafuri AN (2006) Removal of selected pollutants from aqueous media by hardwood mulch. J Hazard Mater 136(2):213–218

    Article  Google Scholar 

  • Regnier P, O’Kane J, Steefel C, Vanderborght J (2002) Modeling complex multicomponent reactive-transport systems: towards a simulation environment based on the concept of a knowledge base. Appl Math Model 26:913–927

    Article  Google Scholar 

  • Reuven Y, Smooke MD, Rabitz H (1987) Sensitivity analysis of one-dimensional mixed initial-boundary value problems: applications to freely propagating premixed laminar flames. J Sci Comput 2(4):345–370

    Article  Google Scholar 

  • Rinaldo A, Botter G, Bertuzzo E, Uccelli A, Settin T, Marani M (2006) Transport at basin scales: 1. Theoretical framework. Hydrol Earth Syst Sci 10(6):873–887

    Article  Google Scholar 

  • Rink K, Kalbacher T, Kolditz O (2011) Visual data management for hydrological analysis. Environ. Earth Sci. doi:10.1007/s12665-011-1230-6 (this issue)

  • Rossman LA (2006) Storm water management model quality assurance report: dynamic wave flow routing. Technical report. Water Supply and Water Resources Division, National Risk Management Research Laboratory, Cincinnati, OH

  • Rossman LA (2010) Storm water management model user’s manual version 5.0. Technical report. Water Supply and Water Resources Divison, National Risk Management Research Laboratory Cincinnati, OH

  • Roubinet D, Liu H-H, de Dreuzy J-R (2010) A new particle tracking approach to simulating transport in heterogeneous fractured porous media. Water Resour Res 46:W11507. doi:10.1029/2010WR009371

    Article  Google Scholar 

  • Rushton KR, Tomlinson LM (1979) Possible mechanisms for leakance between aquifers and rivers. J Hydrol 40:49–65

    Article  Google Scholar 

  • Samaniego L, Kumar R, Attinger S (2010) Streamflow prediction in ungauged catchments using copula-based dissimilarity measures. Water Resour Res 46(7):W0250

    Google Scholar 

  • Sänger N, Kitanidis PK, Street RL (2004) A numerical study of surface–subsurface exchange processes at a riffle-pool pair in the Lahn River, Germany. Water Resour Res 41:W12424. doi:10.1029/2004WR003875

    Article  Google Scholar 

  • Sanz E, Voss CI (2005) Inverse modeling for seawater intrusion in coastal aquifers: Insights about parameter sensitivities, variances, correlations and estimation procedures derived from the Henry problem. Adv Water Resour 29(3):439–457

    Article  Google Scholar 

  • Schanze J, Trümper J, Burmeister C, Pavlik D, Kruhlov I (2011) A methodology for dealing with regional change in integrated water resources management. Environ. Earth Sci. 10.1007/s12665-011-0916-0 (this issue)

  • Scheifhacken N, Haase U, Gram-Radu L, Kozovyi R, Berendonk T (2011) The comparison and suitability of assessment methods to identify the hydro-morphological status of a transboundary river in the Ukraine. Environ Earth Sci. doi:10.1007/s12665-011-1218-2 (this issue)

  • Schneider CL, Attinger S, Delfs J-O, Hildebrandt A (2010) Implementing small scale processes at the soil–plant interface—the role of root architecture for calculating root water uptake. Hydrol Earth Syst Sci 14:279–289

    Article  Google Scholar 

  • Schornberg C, Schmidt C, Kalbus E, Fleckenstein JH (2010) Simulating the effects of geologic heterogeneity and transient boundary conditions on streambed temperatures—implications for temperature-based water flux calculations. Adv Water Resour 33(11):1309–1319

    Article  Google Scholar 

  • Schütze N, Kloss S, Lennartz F, Bakri A, Schmitz GH (2011) Optimal planning and operation of irrigation systems under water resource constraints in Oman considering climatic uncertainty. Environ Earth Sci. doi:10.1007/s12665-011-1135-4 (this issue)

  • Shao H, Dmytrieva SV, Kolditz O, Kulik DA, Pfingsten W, Kosakowski G (2009) Modeling reactive transport in non-ideal aqueous-solid solution system. Appl Geochem 24(7):1287–1300

    Article  Google Scholar 

  • Shen CP, Phanikumar MS (2010) A process-based distributed model based on a large-scale method for surface–subsurface coupling. Adv Water Resour 33(12):1524–1541

    Article  Google Scholar 

  • Sigel K, Altantuul K, Basandorj D (2011) Household needs and demand for improved water supply and sanitation in peri-urban ger areas: the case of Darkhan, Mongolia. Environ Earth Sci. doi:10.1007/s12665-011-1221-7 (this issue)

  • Singh VP, Woolhiser DA (2002) Mathematical modeling of watershed hydrology. J Hydrol Eng ASCE 7:270–292

    Article  Google Scholar 

  • Sklash MG, Farvolden RN (1997) The role of groundwater in storm runoff. J Hydrol 43:45–65

    Article  Google Scholar 

  • Smith JA, Baeck ML, Meierdierks KL, Nelson PA (2005) Field studies of the storm event hydrologic response in an urbanizing watershed. Water Resour Res 41:W10413. doi:1029/2004WR003712

    Article  Google Scholar 

  • Smith RE, Woolhiser DA (1971) Overland flow on an infiltrating surface. Water Resour Res 7(4):899–913

    Article  Google Scholar 

  • Sophocleus M (2002) Interactions between groundwater and surface water: the state of the science. J Hydrol 10(1):52–67

    Google Scholar 

  • Stonedahl SH, Harvey JW, Wörman A, Salehin M, Packman AJ (2010) A multiscale model for integrating hyporheic exchange from ripples to meanders. Water Resour Res 46:W12539. doi:10.1029/2009WR008865

    Article  Google Scholar 

  • Strauch G, Möder M, Wennrich R, K KO, Gläser HR, Schladitz T, Müller C, Schirmer K, Reinstorf F, Schirmer M (2008) Indicators for assessing anthropogenic impact on urban surface and groundwater. J Soils Sediments 8(1):23–33

    Article  Google Scholar 

  • Sulaiman IM, Xiao L, Lal AA (1999) Evaluation of Cryptosporidium parvum genotyping techniques. Appl Environ Microbiol 65(10):4431–4435

    Google Scholar 

  • Sulis M, Meyerhoff SB, Paniconi C, Maxwell RM, Putti M, Kollet SJ (2010) A comparison of two physics-based numerical models for simulating surface water-groundwater interactions. Adv Water Resour 33:456–467

    Article  Google Scholar 

  • Sulis M, Paniconi C, Rivard C, Harvey R, Chaumont D (2011) Assessment of climate change impacts at the catchment scale with a detailed hydrological model of surface–subsurface interactions and comparison with a land surface model. Water Resour Res 47:W01513. doi:10.1029/2010WR009167

    Article  Google Scholar 

  • Sun F, Shao H, Kalbacher T, Wang W, Yang Z, Huang Z, Kolditz O (2011) Groundwater drawdown at Nankou site of Beijing Plain: model development and calibration. Environ Earth Sci. doi:10.1007/s12665-011-0957-4

  • Sun N, Sun N-Z, Elimelech M, Ryan JN (2001) Sensitivity analysis and parameter identifiability for colloid transport in geochemically heterogeneous porous media. Water Resour Res 37(2):209–222

    Article  Google Scholar 

  • Tavares Wahren F, Tarasiuk M, Mykhnovych A, Kit M, Feger KH, Schwärzel K (2011) Estimation of spatially distributed soil information. Dealing with data shortages in the Western Bug Basin, Ukraine. Environ Earth Sci. doi:10.1007/s12665-011-1197-3 (this issue)

  • Teutsch G, Krüger E (2010) Water science alliance—white paper: priority research fields. UFZ Leipzig, Germany. http://www.watersciencealliance.org

  • Theis CV (1941) The effect of a well on the flow of a nearby stream. AGU Transact 22(3):734–738

    Google Scholar 

  • Therrien R, McLaren RG, Sudicky EA, Panday SM (2004) Hydrosphere, a three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport. Technical report, Université Laval and University of Waterloo, Canada

  • van der Steen P, Howe C (2009) Managing water in the city of the future; strategic planing and science. Rev Environ Sci Biotechnol 8:115–120

    Article  Google Scholar 

  • van Werkhoven K, Wagener T, PM Reed P, Tang Y (2009) Sensitivity-guided reduction of parametric dimensionality for multi-objective calibration of watershed models. Adv Water Res 32(8):1154–1169

    Article  Google Scholar 

  • VanderKwaak JE, Loague K (2001) Hydrologic-response simulations for the R-5 catchment with a comprehensive physics-based model. Water Resour Res 37(4):999–1013

    Article  Google Scholar 

  • vanGenuchten MT, Wierenga PJ (1976) Mass transfer studies in sorbing porous media I. Analytical solutions. Soil Sci Soc Am J 40:473–480

    Article  Google Scholar 

  • vanGriensven A, Meixner T, Grunwald S, Bishop T, Diluzio M, Srinivasan R (2006) A global sensitivity analysis tool for the parameters of multi-variable catchment models. J Hydrol 324(1-4):10–23

    Article  Google Scholar 

  • Vasyukova E, Uhl W, Braga F, Neder K (2011) Challenges of drinking water production from surface water sources in Brasilia DF, Brazil. Environ Earth Sci. doi:10.1007/s12665-011-1308-1 (this issue)

  • Vetter S, Schaffrath D, Bernhofer C (2011) Spatial Simulation of evapotranspiration of semi-arid Inner Mongolian grassland based on MODIS and eddy covariance data. Environ Earth Sci. doi:10.1007/s12665-011-1187-5 (this issue)

  • Voloshyn P (2010) Personal communication

  • Wang W, Kolditz O (2007) Object-oriented finite element analysis of thermo-hydro-mechanical (THM) problems in porous media. Int J Numer Methods Eng 69(1):162–201

    Article  Google Scholar 

  • Wang W, Kolditz O (2009) A parallel finite element scheme for thermo-hydro-mechanical (THM) coupled problems in porous media. Comput Geosci 35(8):1631–1641

    Article  Google Scholar 

  • Weiler M, McDonnel JJ (2007) Conceptualizing lateral preferential flow and flow networks and simulating the effects on gauged and ungauged hillslopes. Water Resour Res 43. doi:10.1029/2006WR004867

  • Whitham GB (1974) Linear and nonlinear waves. Wiley, New York

    Google Scholar 

  • Zhu C, Leung LR, Gochis D, Qian Y, Lettenmaier DP (2009) Evaluating the influence of antecedent soil moisture on variability of the North American monsoon precipitation in the coupled MM5/VIC modeling system. J Adv Model. Earth Syst 1. doi:10.3894/JAMES.2009.1.13

  • Zlotnik VA, Huang H (1999) Effect of shallow penetration and streambed sediments on aquifer response to stream stage fluctuations (analytical model). Groundwater 37(4):599–605

    Google Scholar 

Download references

Acknowledgments

This work was funded by the German Ministry of Education and Research (BMBF) project “IWAS—International Water Research Alliance Saxony” (Project No. 02WM1027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens-Olaf Delfs.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Delfs, JO., Blumensaat, F., Wang, W. et al. Coupling hydrogeological with surface runoff model in a Poltva case study in Western Ukraine. Environ Earth Sci 65, 1439–1457 (2012). https://doi.org/10.1007/s12665-011-1285-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-011-1285-4

Keywords

  • Integrated surface–subsurface flow modelling
  • Urban water
  • Conductance concept
  • Sensitivity analysis
  • Random walk particle tracking (RWPT)
  • Poltva basin (Western Ukraine)