Advertisement

Environmental Earth Sciences

, Volume 66, Issue 1, pp 223–229 | Cite as

Environmental aspect of radon potential in terra rossa and eutric cambisol in Slovenia

  • J. Vaupotič
  • P. Žvab Rožič
  • D. Barišić
Original Article

Abstract

Terra rossa and eutric cambisol soils were surveyed in Slovenia. At both sites, 6–13 boreholes were drilled in a regular 24 m × 24 m square grid. Soil samples from various depths were taken for gamma spectrometric analysis, and radon in soil gas was measured at a depth of 80 cm using an AlphaGuard instrument. The following ranges of activity concentration (Bq kg−1) were obtained for 238U, 226Ra, 228Ra, 40K and 137Cs: in terra rossa, 64–74, 70–84, 45–49, 293–345, 20–30 and, in eutric cambisol, 55–80, 132–147, 50–57, 473–529, 106–272. Radon activity concentrations in both soils ranged from about 100 kBq m−3 to 370 kBq m−3.

Keywords

Terra rossa Eutric cambisol Radioactivity of soil Radon in soil gas 

Notes

Acknowledgments

The study was financed by the Slovenian Research Agency and the Ministry of Science and Technology of Croatia. The authors thank Ms. Petra Dujmović, Ms. Jana Burger, Mr. Tomislav Kardum and Mr. Ludvik Lipič for their technical assistance in field measurements and laboratory analyses.

References

  1. Baixeras C, Backmeister GU, Climent H, Albarracín D, Enge W, Freyer K, Treutler HC, Jönsson G, Ghose R, Monnin M, Font L, Devantier R, Seidel J-L, Sciocchetti G, Cotellessa G (1996) Report on the first phase activity of an EU project concerning coordinated radon measurements in five European countries. Environ Int 22:S687–S697CrossRefGoogle Scholar
  2. Barišić D (1993) Radionuclides in soils of Istria. Ph.D. Thesis, University of Zagreb, Croatia (in Croatian, abstract in English)Google Scholar
  3. Barišić D, Vertačnik A, Lulić S (1999) Caesium contamination and vertical distribution in undisturbed soils in Croatia. J Environ Radioact 46:361–374CrossRefGoogle Scholar
  4. Barišić D, Bromenshenk JJ, Kezić N, Vertačnik A (2002) The role of honey bees in environmental monitoring in Croatia. In: Devillers J, Pham-Delegue MH (eds) Honey Bees: Estimating the Environmental Impact of Chemicals. Taylor & Francis, London, pp 160–185Google Scholar
  5. Bochicchio F, Campos Venuti G, Nuccetelli C, Risica S, Tancredi F (1996) Indoor measurements of 220Rn and 222Rn and their decay products in a Mediterranean climate area. Environ Int 22(Suppl. 1):S633–S639CrossRefGoogle Scholar
  6. Brajnik D, Miklavžič U, Tomšič J (1992) Map of natural radioactivity in Slovenia and its correlation to emanation of radon. Radiat Prot Dosim 45:273–276Google Scholar
  7. Brajnik D, Korun M, Miklavžič U (1993) Regional distribution of natural and man-made radioactivity in Slovenia. Sci Total Environ 130(131):147–153Google Scholar
  8. Buser S (1965) Basic geological map of Yugoslavia 1:100 000, Ribnica (in Slovene). Geological survey of Yugoslavia, Belgrade, p 56Google Scholar
  9. Chauchan RP, Chakarvarti SK (2002) Radon diffusion through soil and fly ash: effect of compaction. Radiat Meas 35:143–146CrossRefGoogle Scholar
  10. Choubey VM, Mukherjee PK, Bajwa BS, Vivek Walia (2008) Geological and tectonic influence on water–soil–radon relationship in Mandi–Manali area, Himachal Himalaya. Environ Geol 52:1163–1171CrossRefGoogle Scholar
  11. Doi M, Kobayashi S (1994) Characterization of Japanese wooden house with enhanced radon and thoron concentrations. Health Phys 66:274–282CrossRefGoogle Scholar
  12. Durrani SA, Badr I (1995) Geostatistically controlled field study of radon levels and the analysis of their spatial variation. Radiat Meas 25:565–572CrossRefGoogle Scholar
  13. Etiope G, Marinelli G (2001) Migration of carrier gases in the geosphere: an overview. Phys Earth Planet Interiors 4069:1–2Google Scholar
  14. Fukui M (2007) Evaluation of radon in soil gas and natural radioactivity in surface soil of Kinki District. Japan J Nucl Sci Technol 44:1106–1116CrossRefGoogle Scholar
  15. Greeman DJ, Rose AW (1996) Factors controlling the emanation of radon and thoron in soils of the eastern U.S.A. Chem Geol 129:1–14CrossRefGoogle Scholar
  16. Hosoda M, Shimo M, Sugino M, Furukawa M, Fukushi M (2007) Effect of soil moisture content on radon and thoron exhalation. J Nucl Sci Technol 44:664–672CrossRefGoogle Scholar
  17. Jurkovšek B, Toman M, Ogorelec B, Šribar L, Drobne K, Poljak M, Šribar L (1996) Geological map of the southern part of the Trieste–Komen plateau. Cretaceous and Paleogene carbonate rocks, 1:50.000 (in Slovene). Geological Survey of Slovenia, Ljubljana, p 143Google Scholar
  18. Kemski J, Klingel R, Schneiders H, Siehl A, Wiegand J (1992) Geological structure and geochemistry controlling radon in soil gas. Radiat Prot Dosim 45:235–239Google Scholar
  19. Kemski J, Siehl A, Stegemann R, Valdivia-Manchego M (2001) Mapping of geogenic radon potential in Germany. Sci Total Environ 272:217–230CrossRefGoogle Scholar
  20. Kozak K, Mazur J, Vaupotič J, Kobal I, Janik M, Kochowska E (2009) Calibration of radon measuring devices of the Radon Center in the IFJ-KR-600 Radon Chamber. Jožef Stefan Institute Report IJS-DP-10103Google Scholar
  21. Kristan J, Kobal I (1973) A modified scintillation cell for the determination of radon in uranium mine atmosphere. Health Phys 24:103–104Google Scholar
  22. Leenhouts HP, Brugmans MJP (2001) Calculation of the 1995 lung cancer incidence in the Netherlands and Sweden caused by smoking and radon: risk implication for radon. Radiat Environ Biophys 40:11–21CrossRefGoogle Scholar
  23. Murray AS, Aitken MJ (1988) Analysis of low level natural radioactivity in small mineral samples for use in thermoluminescence dating, using high-resolution gamma spectrometry. Int J Appl Radiat Isot 39:145–158CrossRefGoogle Scholar
  24. Nazaroff WW, Moed BA, Sextro RG (1988) Soil as a source of indoor radon: generation, migration and entry. In: Nazaroff WW, Nero AV Jr (eds) Radon and its decay products in indoor air. Wiley, TorontoGoogle Scholar
  25. Neznal Mar, Neznal Mat, Šmarda J (1996) Assessment of radon potential of soils–A five-year experience. Environ Int 22(Suppl. 1):819–828CrossRefGoogle Scholar
  26. Ota M, Iida T, Yamazawa H, Nagara S, Ishimori Y, Sato K, Tokizawa T (2007) Suppression of radon exhalation from soil by covering with clay-mixed soil. J Nucl Sci Technol 44:791–800CrossRefGoogle Scholar
  27. Papachristodoulou C, Ioannides K, Spathis S (2007) The effect of moisture content on radon diffusion through soil: assessment in laboratory and field experiments. Health Phys 92:257–264CrossRefGoogle Scholar
  28. Quindós LS, Fernández PL, Soto J, Ródenas C, Gómez J (1994) Natural radioactivity in Spanish soils. Health Phys 66:194–200CrossRefGoogle Scholar
  29. Ruckerbauer F, Winkler R (2001) Radon concentration in soil gas: a comparison of methods. Appl Radiat Isot 55:273–280CrossRefGoogle Scholar
  30. Rushing DA, Garcia WJ, Clark DA (1964) Analysis of effluents and environmental samples. In: IAEA (International Atomic Energy Agency) symposium on radiological health and safety in mining and milling of nuclear materials, 12–16 October 1963, International Atomic Energy Agency, ViennaGoogle Scholar
  31. Segovia N, Tamez E, Mena M (1992) Radon-in-soil concentration levels in Mexico. Radiat Prot Dosim 45:241–244Google Scholar
  32. Shery SD, Whittlestone S, Hart KP, Hill SE (1989) The flux of radon and thoron from Australian soils. J Geophys Res 94:8567–8576CrossRefGoogle Scholar
  33. Shuller P, Ellis A, Kirchner G (1997) Vertical migration of fallout of 137Cs in soils from S. Chile. Sci Total Environ 193:197–205CrossRefGoogle Scholar
  34. Šporar M (2007) Soil evaluation in Slovenia (in Slovene). Atlas, Biotechnical Faculty, University of Ljubljana  Google Scholar
  35. Steinhäusler F (1996) Environmental 220Rn: a review. Environ Int 22(Suppl. 1):S1111–S1123CrossRefGoogle Scholar
  36. Sušin J (1964) Contribution of terra rossa knowledge. PhD thesis, University of Ljubljana (in Slovene)Google Scholar
  37. Tokonami S, Sun Q, Akiba S, Zhuo W, Furukawa M, Ishikawa T, Hou C, Zhang S, Narazaki Y, Ohji B, Yonehara H, Yamada Y (2004) Radon and thoron exposure for cave residents in Sahnxi and Shaanxi Province. Radiat Res 162:390–396CrossRefGoogle Scholar
  38. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 2000. Effects and risks of ionizing radiation, Report to the general assembly, United Nations, 2000Google Scholar
  39. Vaupotič J, Ančik M, Škofljanec M, Kobal I (1992) Alpha scintillation cells for direct measurement of indoor radon. J Environ Sci Health A27:1535–1540Google Scholar
  40. Vaupotič J, Križman M, Planinić J, Adamič K, Stegnar P, Kobal I, Pezdič J (1994) Systematic indoor radon and gamma measurements in kindergartens and play schools in Slovenia. Health Phys 66:550–556CrossRefGoogle Scholar
  41. Vaupotič J, Šikovec M, Kobal I (2000) Systematic indoor radon and gamma-ray measurements in Slovenian schools. Health Phys 78:559–562CrossRefGoogle Scholar
  42. Vaupotič J, Andjelov M, Kobal I (2002) Relationship between radon concentrations in indoor air and soil gas. Environ Geol (Berlin) 42:583–587CrossRefGoogle Scholar
  43. Vaupotič J, Žvab P, Gregorič A, Dujmović P, Kocman D, Kobal I, Kozak K, Mazur J, Kochowska E, Haber R (2007) Soil gas radon potential on radon prone areas (in Slovene, abstract in English). Jožef Stefan Institute Report IJS-DP-9694Google Scholar
  44. Vaupotič J, Žvab P, Gregorič A, Kobal I, Kocman D, Kotnik J, Križman M (2008) Radon mapping in Slovenia based on its levels in soil gas. In: Book of abstracts 33rd international geological congress, 6–14 August 2008, Oslo, Norway. Abstract no. S. l.: s. nGoogle Scholar
  45. Winkler R, Ruckerbauer F, Bunzl K (2001) Radon concentration in soil gas: a comparison of the variability resulting from different methods, spatial heterogeneity and seasonal fluctuations. Sci Total Environ 272:273–282CrossRefGoogle Scholar
  46. Zhang B, Chen B, Gao Y, Wang Y, Cui H, Li Z (2005) Thoron levels in traditional Chinese residential dwellings. Radiat Environ Biophys 44:193–199CrossRefGoogle Scholar
  47. Žvab P, Vaupotič J, Dolenec T (2006) Reasons for elevated radon levels inside the building in Divača. Geologija (Ljubljana) 49:409–415Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Jožef Stefan InstituteLjubljanaSlovenia
  2. 2.Faculty of Natural Sciences and EngineeringUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Ruđer Bošković InstituteZagrebCroatia

Personalised recommendations