Skip to main content

Advertisement

Log in

Toxicity effects of four typical nanomaterials on the growth of Escherichia coli, Bacillus subtilis and Agrobacterium tumefaciens

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

To offer an insight into the toxicity of nanomaterials (NM) on the growth of bacteria, Escherichia coli (E. coli), Bacillus subtilis (B. subtilis) and Agrobacterium tumefaciens (A. tumefaciens) were exposed to nano-Au, nano-Ag, nano-Fe and fullerene (C60) in this study. As an effective bactericide, nano-Ag induced high toxicity on these three bacteria; C60 could inhibit their growth; however, B. subtilis and E. coli could recover as exposure time extended. Nano-Au and nano-Fe had hardly any effect on three bacteria. A. tumefaciens showed the lowest resistance and slowest growth rate during exposure. Images obtained by scanning electron microscope (SEM) revealed that nano-Ag could cause damage to the cell structure of three bacteria at 1 μg/mL. Slight damage on E. coli was found when exposed to C60, whereas no obvious physical damage was found after exposure to nano-Au or nano-Fe. It is assumed that surface activities of NM might be responsible for the different toxic effects on these bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bystrzejewska-Piotrowska GJ, Golimowski J, Urban PL (2009) Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag 29(9):2587–2595

    Article  Google Scholar 

  • Choudhary TV, Goodman DW (2002) Oxidation catalysis by supported gold nano-clusters. Top Catal 21(1):25–34

    Article  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60(4):609–640

    Google Scholar 

  • Drake PL, Hazelwood KJ (2005) Exposure-related health effects of silver and silver compounds: a review. Ann Occup Hyg 49(7):575–585

    Google Scholar 

  • Dror-Ehre A, Mamane H, Belenkova T, Markovich G, Adin A (2009) Silver nanoparticle-E. coli colloidal interaction in water and effect on E. coli survival. J Colloid Interf Sci 339(2):521–526

    Article  Google Scholar 

  • Fang J, Lyon DY, Wiesner MR, Dong J, Alvarez PJJ (2007) Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ Sci Technol 41(7):2636–2642

    Article  Google Scholar 

  • Fiorito S, Serafino A, Andreola F, Bernier P (2006) Effects of fullerenes and single-wall carbon nanotubes on murine and human macrophages. Carbon 44(6):1100–1105

    Article  Google Scholar 

  • Folkmann JK, Risom L, Jacobsen NR, Wallin H, Loft S, Møller P (2009) Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environ Health Perspect 117(5):703–708

    Google Scholar 

  • Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ (2008) The apoptotic effect of nanosilver is mediated by a ROS-and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179(3):130–139

    Article  Google Scholar 

  • Jacobsen NR, Pojana G, White P, Møller P, Cohn CA, Korsholm KS, Vogel U, Marcomini A et al (2008) Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C60 fullerenes in the FE1-Muta Mouse lung epithelial cells. Environ Mol Mutagen 49(6):476–487

    Article  Google Scholar 

  • Johansen A, Pedersen AL, Jensen KA, Karlson U, Hansen BM, Scott-Fordsmand JJ, Winding A (2009) Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Environ Toxicol Chem 27(9):1895–1903

    Article  Google Scholar 

  • Joshi MM, Brown HM, Romesser JA (1985) Degradation of chlorsulfuron by soil-microorganisms. Weed Sci 33(6):888–893

    Google Scholar 

  • Kashiwada S (2006) Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environ Health Perspect 114(11):1697

    Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK et al (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3(1):95–101

    Article  Google Scholar 

  • Larese FF, D’Agostin F, Crosera M, Adami G, Renzi N, Bovenzi M, Maina G (2009) Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 255(1–2):33–37

    Article  Google Scholar 

  • Ledin M, Pedersen K (1996) The environmental impact of mine wastes—roles of microorganisms and their significance in treatment of mine wastes. Earth Sci Rev 41(1–2):67–108

    Article  Google Scholar 

  • Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XHN (2007) In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1(2):133

    Article  Google Scholar 

  • Lepp PW, Brinig MM, Ouverney CC, Palm K, Armitage GC, Relman DA (2004) Methanogenic Archaea and human periodontal disease. Proc Natl Acad Sci USA 101(16):6176

    Article  Google Scholar 

  • Leslie M (2009) Clingy bacteria and Crohn’s disease. J Exp Med 206(10):2055

    Google Scholar 

  • Levi N, Hantgan RR, Lively MO, Carroll DL, Prasad GL (2006) C60-Fullerenes: detection of intracellular photoluminescence and lack of cytotoxic effects. J Nanobiotechnoly 4(1):14

    Article  Google Scholar 

  • Li HC, Zhou QF, Wu Y, Fu JJ, Wang T, Jiang GB (2009) Effects of waterborne nano-iron on medaka (Oryzias latipes): antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicol Environ Saf 72(3):684–692

    Article  Google Scholar 

  • Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, Cui L, Zhou QF et al (2010) Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology 4(3):319–330

    Article  Google Scholar 

  • Lyon DY, Alvarez PJJ (2008) Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation. Environ Sci Technol 42(21):8127–8132

    Article  Google Scholar 

  • Nazarenko Y, Han TW, Lioy PJ, Mainelis G (2011) Potential for exposure to engineered nanoparticles from nanotechnology-based consumer spray products. J Expo Sci Environ Epidemiol. doi:10.1038/jes.2011.10

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  Google Scholar 

  • Oberdöerster ES, Zhu SQ, Blickley TM, McClellan-Green P, Haasch ML (2006) Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms. Carbon 44(6):1112–1120

    Article  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720

    Article  Google Scholar 

  • Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Nevecna T et al (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110(33):16248–16253

    Article  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28(9):897–906

    Google Scholar 

  • Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B et al (2004) The differential cytotoxicity of water-soluble fullerenes. Nano Lett 4(10):1881–1887

    Article  Google Scholar 

  • Sayes CM, Gobin AM, Ausman KD, Mendez KD, West JL, Colvin VL (2005) Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26(36):7587–7595

    Google Scholar 

  • Seiler HG, Sigel H, Sigel A (1988) Handbook on toxicity of inorganic compounds. Marcel Dekker, New York

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface 145(1–2):83–96

    Article  Google Scholar 

  • Song MM, Song WJ, Bi H, Wang J, Wu WL, Sun J, Yu M (2009) Cytotoxicity and cellular uptake of iron nanowires. Biomaterials 31(7):1509–1517

    Article  Google Scholar 

  • Tang YJ, Ashcroft JM, Chen D, Min G, Kim CH, Murkhejee B, Larabell C, Keasling JD et al (2007) Charge-associated effects of fullerene derivatives on microbial structural integrity and central metabolism. Nano Lett 7(3):754–760

    Article  Google Scholar 

  • Tiedje J, Donohue T (2008) Microbes in the energy grid. Science 320(5879):985

    Article  Google Scholar 

  • Varanasi P, Fullana A, Sidhu S (2007) Remediation of PCB contaminated soils using iron nano-particles. Chemosphere 66(6):1031–1038

    Article  Google Scholar 

  • Wang C, Baer DR, Amonette JE, Engelhard MH, Antony J, Qiang Y (2009) Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. J Am Chem Soc 131(25):8824–8832

    Article  Google Scholar 

  • Yamakoshi YN, Yagami T, Fukuhara K, Sueyoshi S, Miyata N (1994) Solubilization of fullerenes into water with polyvinylpyrrolidone applicable to biological tests. J Chem Soc Chem Commun 1994(4):517–518

    Article  Google Scholar 

  • Zak DR, Pregitzer KS, Curtis PS, Holmes WE (2000) Atmospheric CO2 and the composition and function of soil microbial communities. Ecol Appl 10(1):47–59

    Google Scholar 

  • Zhang W (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3):323–332

    Article  Google Scholar 

  • Zhou YM, Zhong CY, Kennedy IM, Pinkerton KE (2003) Pulmonary responses of acute exposure to ultrafine iron particles in healthy adult rats. Environ Toxicol 8(4):227–235

    Article  Google Scholar 

  • Zhu S, Oberdorster E, Haasch ML (2006) Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Mar Environ Res 62:S5–S9

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the National Natural Science Foundation of China (20907017, 20890112), and National Key Technology R&D Program of China (No. 2007BAC27B01,2007BAC27B02-1a) for the funding during the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Liang or Jie Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Wang, L., Wang, Y. et al. Toxicity effects of four typical nanomaterials on the growth of Escherichia coli, Bacillus subtilis and Agrobacterium tumefaciens . Environ Earth Sci 65, 1643–1649 (2012). https://doi.org/10.1007/s12665-011-1139-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-011-1139-0

Keywords

Navigation