Environmental Earth Sciences

, Volume 65, Issue 3, pp 861–870 | Cite as

Investigating the redox sensitivity of para-toluenesulfonamide (p-TSA) in groundwater

  • Raffaella Meffe
  • Gudrun Massmann
  • Claus Kohfahl
  • Thomas Taute
  • Doreen Richter
  • Uwe Dünnbier
  • Asaf Pekdeger
Original Article


The groundwater downstream of a former sewage irrigation farm in Berlin is contaminated with ammonium (NH4 +) and para-toluenesulfonamide (p-TSA), besides other anthropogenic pollutants. In the field, in situ removal of NH4 + by gaseous oxygen (O2) and air injection is currently being tested. A laboratory column experiment using aquifer material and groundwater from the site was performed to determine whether this remediation technology is also feasible to reduce high p-TSA concentrations in the anoxic groundwater. First, the column was operated under anoxic conditions. Later, compressed air was introduced into the system to simulate oxic conditions. Samples were collected from the column outlet before and after the addition of compressed air. The experiment revealed that whereas p-TSA was not removed under anoxic conditions, it was almost fully eliminated under oxic conditions. Results were modelled using a transient one-dimensional solute transport model. The degradation rate constants for p-TSA increased from 2.8E−06 to 7.5E−05 s–1 as a result of microbial adaption to the change of redox conditions. Results show that O2 injection into an anoxic aquifer is a successful strategy for p-TSA remediation.


p-TSA Microorganic pollutants Column experiment Redox sensitivity 


  1. Appello CAJ, Postma D (2007) Geochemistry, groundwater and pollution. In: Balkema AA (ed) Amsterdam, The NetherlandsGoogle Scholar
  2. Beljaars PR, Vandijk R, Brands A (1994) Determination of p-toluenesulfonamide in ice-cream by combination of continuous-flow and liquid-chromatography—summary of collaborative study. J AOAC Int 77(3):672–674Google Scholar
  3. Berner RA (1981) A new geochemical classification of sedimentary environments. J Sed Petrol 51(2):359–365Google Scholar
  4. BIOXWAND (2004) Forschungs-und Entwicklungsvorhaben Bioxwand-Entwicklung und Erprobung einer Bio-Oxidationswand im Abstrom eines hoch mit Ammonium kontaminierten Grundwasserleiters, ein Projekt der Berliner Wasserbetriebe, gefördert durch das Bundesministerium für Bildung und Forschung im Rahmen des BMBF-Förderprogrammes Umweltforschung und Umwelttechnik, Projekttraeger für Wassertechnologie und Entsorgung Forschungszentrum Karlsruhe GmbH in der Helmholtz-Gesellschaft, Foerderkennzeichen 02WT 0091, February 2004. DGFZ, Dresden (in German unpubl)Google Scholar
  5. Borden RC, Goin RT, Kao CM (1997) Control of BTEX migration using a biologically enhanced permeable barrier. Ground Water Monit Remediat 17(1):70–80Google Scholar
  6. Bouwer EJ, Zehnder JB (1993) Bioremediation of organic compounds—putting microbial metabolism to work. Trends Biotechnol 11:360–367Google Scholar
  7. BWB (2007) (Berliner Wasserbetriebe)
  8. Chapelle FH (2001) Groundwater, microbiology and geochemistry Inc. Wiley, New YorkGoogle Scholar
  9. Chapman SW, Byerley BT, Smyth DA, Mackay DM (1997) A pilot test of passive oxygen release for enhancement of in situ bioremediation of BTEX-contaminated ground water. Ground Water Monit Remediat 17(2):93–105Google Scholar
  10. Comsol Multiphysics (2006) Earth Science Module User’s Guide. Version 3.3. © Copyright 1994–2006 by Comsol AbGoogle Scholar
  11. DVWK (1992) Grundwasseruntersuchung und Probenahme 128. Regeln zur Wasserwirtschaft-Entnahme und Untersuchungsumfang von Grundwasserproben, pp 36 (Groundwater investigation and sampling 128. Rules for water sampling and analysis of groundwater samples)Google Scholar
  12. Engelmann F, Remus W, Roscher C, Voigt I (1992) Analyse der zeitlichen und räumlichen Beschaffenheitsentwicklung des Grundwassers im Einzugsgebiet der Nordgalerien des Wasserwerkes Berlin-Friedrichshagen (Unpublished). UWG GmbH Berlin, BerlinGoogle Scholar
  13. Fiorenza S, Ward CH (1992) Microbial adaptation to hydrogen peroxide and biodegradation of aromatic hydrocarbons. J Ind Microbiol Biotechnol 18:140–151Google Scholar
  14. Gaikowski MP, Larson WJ, Steuer JJ, Gingerich WH (2004) Validation of two dilution models to predict chloramine-T concentrations in aquaculture facility effluent. Aquat Eng 30(3–4):127–140Google Scholar
  15. Groundwater Research Institute GmbH Dresden (2000) Prozeßuntersuchungen in verschiedenen Maßstabsebenen zur gekoppelteten in situ Nitrifikation/Denitrifikation als Sanierungstechnologie für einen stark stickstoffkontaminierten Grundwasserleiter. (in German unpubl)Google Scholar
  16. Haneke KE (2002) Toxicological summary for chloramine-T [127-65-1] and p-toluenesulfonamide [70-55-3]. Integrated Laboratory System (, Integrated Laboratory Systems, pp 68
  17. Harris JO, Powell MD, Attard M, Green TJ (2004) Efficacy of chloramine-T as a treatment for amoebic gill disease (AGD) in marine Atlantic salmon (Salmo salar L.). Aquac Res 35(15):1448–1456Google Scholar
  18. Heberer T, Massmann G, Fanck B, Taute T, Dünnbier U (2008) Behaviour and redox sensitivity of antimicrobial residues during bank filtration. Chemosphere 73:451–460Google Scholar
  19. Hecht H, Kölling M (2002) Investigation of pyrite weathering processes in the vadose zone using optical oxygen sensors. Environ Geol 42:800–809Google Scholar
  20. Holm PE, Nielsen PH, Albrechtsen HJ, Christensen TH (1992) Importance of unattached bacteria and bacteria attached to the sediment in determining potential for degradation of xenobiotic organic contaminant in an aerobic aquifer. Appl Environ Microbiol 58(9):3020–3026Google Scholar
  21. Horner C, Engelmann F, Nützmann (2009) Model based verification and prognosis of acidification and sulphate releasing processes downstream of a former sewage field in Berlin (Germany). J Cont Hydrol 106:83–98Google Scholar
  22. IUCLID (International Uniform Chemical Information Database) (2007). Available on internet at
  23. Massmann G, Greskowiak J, Dunnbier U, Zuehlke S, Knappe A, Pekdeger A (2006) The impact of variable temperatures on the redox conditions and the behavior of pharmaceuticals residues during artificial recharge. J Hydrol 328:141–156Google Scholar
  24. Massmann G, Dünnbier U, Heberer T, Taute T (2008) Behaviour and redox sensitivity of pharmaceuticals residues during bank filtration—investigation of phenanzone-type residues. Chemosphere 71(8):1476–1485Google Scholar
  25. Meffe R, Kohfahl C, Holzbecher E, Massmann G, Richter D, Dünnbier U, Pekdeger A (2010) Modelling the removal of p-TSA (para-toluenesulfonamide) during rapid sand filtration used for drinking water treatment. Water Res 44(1):205–213Google Scholar
  26. Meinertz JR, Schmidt LJ, Stehly GR, Gingerich WH (1999) Liquid chromatographic determination of para-toluenesulfonamide in edible fillet tissues from three species of fish. J AOAC Int 82(5):1064–1070Google Scholar
  27. OECD (Organization of Economic Co-operation and Development) (1994) Screening information data set for high production volume chemicals. vol 2, UNEP Chemicals, p 28Google Scholar
  28. Pholchan P, Jones M, Donnelly T, Sallis PJ (2008) Fate of estrogens during the biological treatment of synthetic wastewater in a nitrite-accumulating sequencing batch reactor. Environ Sci Technol 42:6141–6147Google Scholar
  29. Richter D, Dünnbier U, Massmann G, Pekdeger A (2007) Quantitative determination of three sulfonamides in environmental water samples using liquid chromatography coupled to electrospray tandem mass spectrometry. J Chromatogr A 1157(1–2):115–121Google Scholar
  30. Richter D, Massmann G, Dünnbier U (2008a) Identification and significance of sulfonamides (p-TSA, o-TSA and BSA) in an urban water cycle (Berlin, Germany). Water Res 42:1369–1378Google Scholar
  31. Richter D, Massmann G, Dünnbier U (2008b) Behaviour and biodegradation of sulfonamides (p-TSA, o-TSA, BSA) during drinking water treatment. Chemosphere 71:1574–1581Google Scholar
  32. Richter D, Massmann G, Taute T, Dünnbier U (2009) Investigation of the fate of sulfonamides down gradient of a decommissioned sewage farm near Berlin, Germany. J Contam Hydrol 106:183–194Google Scholar
  33. Salanitro JP, Johnson PC, Spinnler GE, Maner PM, Wisniewski HL, Bruce C (2000) Field-scale demonstration of enhanced MTBE bioremediation through aquifer bioaugmentation and oxygenation. Environ Sci Technol 34(19):4152–4162Google Scholar
  34. Smail DA, Grant R, Simpson D, Bain N, Hastings TS (2004) Disinfectants against cultured Infectious Salmon Anaemia (ISA) virus: the virucidal effect of three iodophors, chloramines-T, chlorine dioxide and peracetic acid/hydrogen peroxide/acetic acid mixture. Aquaculture 240(1–4):29–38Google Scholar
  35. Ternes TA, Joss A, Siegrist H (2004) Scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environ Sci Technol 38:392A–399AGoogle Scholar
  36. Toride N, Leij FJ, van Genuchten MTh (1999) The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments. US Salinity Lab, Agric Res Service, US Dep Of Agric, Research Report No. 137, Riverside, CAGoogle Scholar
  37. van Haperen AM, van Velde JW, van Ginkel CG (2001) Biodegradation of p-toluenesulphonamide by a Pseudomona sp. FEMS Microbiol Lett 204:299–304Google Scholar
  38. Wilson RD, Mackay DM, Scow KM (2002) In situ MTBE biodegradation supported by diffusive oxygen release. Environ Sci Technol 36(2):190–199Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Raffaella Meffe
    • 1
  • Gudrun Massmann
    • 2
  • Claus Kohfahl
    • 3
  • Thomas Taute
    • 1
  • Doreen Richter
    • 4
  • Uwe Dünnbier
    • 5
  • Asaf Pekdeger
    • 1
  1. 1.Institute of Geological SciencesFreie Universität BerlinBerlinGermany
  2. 2.Department of Biology and Environmental SciencesCarl von Ossietzky Universität OldenburgOldenburg, BerlinGermany
  3. 3.Instituto Geológico y MineroSevillaSpain
  4. 4.DVGW-Technologiezentrum Wasser (TZW)KarlsruheGermany
  5. 5.Department of LaboratoriesBerliner Wasser BetriebeBerlinGermany

Personalised recommendations