Environmental Earth Sciences

, Volume 65, Issue 5, pp 1475–1482 | Cite as

Dynamic downscaling of global climate projections for Eastern Europe with a horizontal resolution of 7 km

  • Dirk Pavlik
  • Dennis Söhl
  • Thomas Pluntke
  • Andriy Mykhnovych
  • Christian Bernhofer
Special Issue


Climate change is one of the key factors influencing the quantity and quality of water resources in hydrologically sensitive regions. In order to downscale global climate simulations from horizontal resolutions of about 125–200 km to about 7 km, a double nesting strategy was chosen. The modelling approach was implemented with the Regional Climate Model CCLM (COSMO-Climate Local Model) with a first nesting covering a central part of Europe and with a second nesting covering parts of Poland, Belarus, and the Ukraine. A control run—driven by global reanalysis data—was evaluated by comparing the model results with corresponding reference data. Long-term yearly and monthly mean differences of temperature and precipitation were statistically assessed. As reference data for the first nesting, the gridded CRU data set with a horizontal resolution of about 55 km was used. Station data of the NOAA and ECA databases were interpolated to provide an appropriate reference data set for the second nesting. Both nestings overestimated long-term yearly precipitation means. Seasonal evaluation of the first nesting showed positive precipitation biases for spring and winter months and negative biases in summer. Furthermore, differences in the spatial precipitation patterns occured, especially in the high mountain area of the Carpathians. The second nesting overestimated precipitation in spring and summer with smaller biases than in the first nesting. Long-term area means of temperature were properly reproduced. The first nesting showed an overestimation for all months with maximal deviations in summer and spring. In contrast, the second nesting was slightly too warm for summer and autumn and too cold for winter and spring.


Eastern Europe Climate change Regional climate model CCLM Dynamic downscaling 



This work was supported by funding from the Federal Ministry for Education and Research (BMBF) in the framework of the project “IWAS—International Water Research Alliance Saxony” (grant 02WM1028). The authors would like to thank the Centre for Information Services and High Performance Computing in Dresden (ZIH) for providing the high performance computer resources and for support, the German High Performance Computing Centre for Climate and Earth System Research (DKRZ) for providing the ERA40 data set, the State Environment Agency Rheinland–Pfalz, Germany, for providing the software package InterMet and the CLM-Community for providing access to and support for the CCLM as well as for scientific discussions and valuable advice.


  1. Bachner S, Kapala A, Simmer C (2008) Evaluation of daily precipitation characteristics in the CLM and their sensitivity to parameterizations. Meteorol Z 17:407–419CrossRefGoogle Scholar
  2. Benestad RE, Hanssen-Bauer I, Chen D (2008) Empirical-Statistical downscaling. World Scientific Publishing, SingaporeGoogle Scholar
  3. Blumensaat F, Wolfram M, Krebs P (2011) Sewer model development under minimum data requirements. Environ Earth Sci. doi:  10.1007/s12665-011-1146-1 (this issue)
  4. Böhm U, Kücken M, Ahrens W, Block A, Hauffe D, Keuler K, Rockel B, Will A (2006) CLM-the climate version of LM: brief description and long-term applications. COSMO Newsl 6:225–235Google Scholar
  5. Botyloch MB (ed.) (2007) Environmental Atlas of Lviv. (in Ukrainian)Google Scholar
  6. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon WT, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, London, pp 848–940Google Scholar
  7. Christensen J, Hulme M, von Storch H, Whetton P, Jones R, Mearns L, Fu C (2001) Regional climate information—evaluation and projections. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge Chapt 10, pp 583–629Google Scholar
  8. Delfs JO, Blumensaat F, Wang W, Krebs P, Kolditz O (2011) Coupling hydrogeological with surface runoff model in a Poltva case study in Western Ukraine. Environ Earth Sci. doi: 10.1007/s12665-011-1285-4 (this issue)
  9. Dierer S, Arpagaus M, Seifert A, Avgoustoglou E, Dumitrache R, Grazzini F, Mercogliano P, Milelli M, Starosta K (2009) Deficiencies in quantitative precipitation forecasts: sensitivity studies using the COSMO model. Meteorol Z 18:631–645CrossRefGoogle Scholar
  10. Ertel A, Lupo A, Scheifhacken N, Bodnarchuk T, Manturova O, Berendonk TU, Petzoldt T (2011) Heavy load and high potential. Anthropogenic pressures and their impacts on the water quality along a lowland river (Western Bug, Ukraine). Environ Earth Sci. doi: 10.1007/s12665-011-1289-0 (this issue)
  11. Feldmann H, Früh B, Schädler G, Panitz HJ, Keuler K, Jacob D, Lorenz P (2008) Evaluation of the precipitation for South-Western Germany from high resolution simulations with regional climate models. Meteorol Z 17:455–465CrossRefGoogle Scholar
  12. Frei C, Christensen JH, Déqué M, Jacob D, Jones RG, Vidale PL (2003) Daily precipitation statistics in regional climate models: Evaluation and intercomparison for the European Alps. J Geophys Res 108:1–19Google Scholar
  13. Groisman PY, Kokknaeva VV, Belokrylova TA, Karl TR (1991) Overcoming biases of precipitation measurement: a history of the USSR experience. B Am Meteorol Soc 72:1725–1732CrossRefGoogle Scholar
  14. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113Google Scholar
  15. Hewitson C, Crane RG (1996) Climate downscaling: techniques and application. Clim Res 7:85–95CrossRefGoogle Scholar
  16. Hinterding A (2003) Entwicklung hybrider Interpolationsverfahren für den automatisierten Betrieb am Beispiel meteorologischer Größen. Inst. f. Geoinformatik, Westfälische Wilhelms-Universität Münster, IfGIprints, 19, Münster, Germany (in German)Google Scholar
  17. Jacob D, Bärring L, Christensen OB, Christensen JH, de Castro M, Déqué M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellström E, Lenderink G, Rockel B, Sánchez E, Schär C, Seneviratne SI, Somot S, van Ulden A, van den Hurk B (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Climatic Change 81:31–52CrossRefGoogle Scholar
  18. Jaeger EB, Anders I, Lüthi D, Rockel B, Schär C, Seneviratne SI (2008) Analysis of ERA40-driven CLM simulations for Europe. Meteorol Z 17:349–367CrossRefGoogle Scholar
  19. Kalbacher T, Delfs JO, Shao H, Wang W, Walther M, Samaniego L, Schneider C, Musolff A, Centler F, Sun F, Hildebrandt A, Liedl R, Borchardt D, Krebs P, Kolditz O (2011) The IWAS-ToolBox: Software coupling for an integrated water resources management. Environ Earth Sci. doi:  10.1007/s12665-011-1270-y (this issue)
  20. Kalbus E, Kalbacher T, Kolditz O, Krüger E, Seegert J, Teutsch G, Borchardt D, Krebs P (2011): IWAS—integrated water resources management under different hydrological, climatic and socioeconomic conditions. Environ Earth Sci. doi:  10.1007/s12665-011-1330-3 (this issue)
  21. Klein Tank AMG, Wijngaard JB, Können GP, Böhm R, Demarée G, Gocheva A, Mileta M, Pashiardis S, Hejkrlik L, Kern-Hansen C, Heino R, Bessemoulin P, Müller-Westermeier G, Tzanakou M, Szalai S, Pálsdóttir T, Fitzgerald D, Rubin S, Capaldo M, Maugeri M, Leitass A, Bukantis A, Aberfeld R, van Engelen AFV, Forland E, Mietus M, Coelho F, Mares C, Razuvaev V, Nieplova E, Cegnar T, Antonio López J, Dahlström B, Moberg A, Kirchhofer W, Ceylan A, Pachaliuk O, Alexander LV, Petrovic P (2002) Daily data set of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J Climatol 22:1441–1453. (Data and metadata available at http://eca.knmi.nl)
  22. Leidel M, Niemann S, Hagemann N (2011) Capacity development as key factor for integrated water resources management (IWRM)—Improving water management in the Western Bug River Basin, Ukraine. Environ Earth Sci. doi:  10.1007/s12665-011-1223-5 (this issue)
  23. Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW S, Sauter T, Theme M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change. recent developments to bridge the gap between dynamical models and the end user. Rev Geophys, RG 3003(48):1–34Google Scholar
  24. New M, Hulme M, Jones P (2000) Representing twentieth-century space-time climate variability. Part II: development of 1901–1996 Monthly Grids of Terrestrial Surface Climate. J Clim 13:2217–2238CrossRefGoogle Scholar
  25. NOAA—National Oceanic and Atmospheric Administration (2010) http://www.ncdc.noaa.gov
  26. Pebesma EJ, Wesseling CG (1998) Gstat, a program for geostatistical modelling, prediction and simulation. Comput Geosci 24:17–31CrossRefGoogle Scholar
  27. Richter D (1995) Ergebnisse methodischer Untersuchungen zur Korrektur des systematischen Messfehlers des Hellmann-Niederschlagsmessers. Berichte des Deutschen Wetterdienstes, 194 (in German)Google Scholar
  28. Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17:347–348CrossRefGoogle Scholar
  29. Roesch A, Jaeger EB, Lüthi D, Seneviratne SI (2008) Analysis of CCLM model biases in relation to intra-ensemble model variability. Meteorol Z 17:369–382CrossRefGoogle Scholar
  30. Schanze J, Trümper J, Burmeister C, Pavlik D, Kruhlov I (2011) A methodology for dealing with regional change in integrated water resources management. Environ Earth Sci. doi:  10.1007/s12665-011-1311-6 (this issue)
  31. Scheifhacken N, Haase U, Gram-Radu L, Kozovyi R, Berendonk T (2011) How to assess hydromorphology? A comparison of Ukrainian and German approaches. Environ Earth Sci. doi:  10.1007/s12665-011-1218-2 (this issue)
  32. Smiatek G, Rockel B, Schättler U (2008) Time invariant data preprocessor for the climate version of the COSMO model (COSMO-CLM). Meteorol Z 17:395–405CrossRefGoogle Scholar
  33. Suklitsch M, Gobiet A, Truhetz H, Awan NK, Göttel H, Jacob D (2010) Error characteristics of high resolution regional climate models over the Alpine area. Clim Dyn. doi:  10.1007/s00382-010-0848-5
  34. Tavares Wahren F, Tarasiuk M, Mykhnovych A, Kit M, Feger KH, Schwärzel K (2011) Estimation of spatially distributed soil information. Dealing with data shortages in the Western Bug Basin, Ukraine. Environ Earth Sci. doi:  10.1007/s12665-011-1197-3 (this issue)
  35. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, Da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Vande Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof F, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hòlm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 Re-Analysis. Q J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  36. Wilks DS (2006) Statistical methods in the atmospheric sciences. Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Dirk Pavlik
    • 1
  • Dennis Söhl
    • 1
  • Thomas Pluntke
    • 1
  • Andriy Mykhnovych
    • 2
  • Christian Bernhofer
    • 1
  1. 1.Institute of Hydrology and Meteorology, Chair of MeteorologyTechnische Universität DresdenDresdenGermany
  2. 2.Department of Applied Geography and CartographyIvan Franko National UniversityLvivUkraine

Personalised recommendations