Skip to main content
Log in

Comparison of quantitative petrographic, stable isotope and cathodoluminescence data for fingerprinting Czech marbles

  • Special Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 21 August 2011

Abstract

Various marbles from both historic quarries and historical artefacts of the Czech Republic were examined in order to make determinations of their provenance. The methodology used was based upon a combination of petrographic image analysis (PIA) of thin sections, stable isotope geochemistry of carbonates, and cathodoluminescence. Multivariate statistical methods (i.e. cluster analysis and discriminant analysis) confirmed the geoscientific relevance of the marble’s different characteristics with a high degree of consistency as well as the enhanced significance of stable C and O isotopes in correlation with the petrographic data. The qualitative cathodoluminescence data provided a useful additional tool to help recognise the fingerprinting of marbles with similar petrographic and/or geochemical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Antonelli F, Lazzarini L, Rasplus L, Turi B (2002) Petrographic and geochemical characterization of cipollino mandolato marble from the French central Pyrenees. In: Herrmann J, Herz N, Newman R (eds) ASMOSIA V. Interdisciplinary studies on ancient stone. Archetype Publications, London, pp 77–90

    Google Scholar 

  • Attanasio D (2003) Ancient white marbles: analysis and identification by paramagnetic resonance spectroscopy. L’erma di Bretschneider, Rome

    Google Scholar 

  • Attanasio D, Brilli M, Ogle N (2006) The isotopic signature of classical marbles. L’erma di Bretschneider, Rome

    Google Scholar 

  • Barbin V (1999) An unidentified but probably identical origin of several white marble artefacts from the Walters art gallery (Baltimore, USA): evidence from petrographic, cathodoluminescence and stable isotope studies. In: Schvoerer M (ed) ASMOSIA IV. Archéomatériaux: Marbres et autres roches. CRPAA-Presses Universitaires de Bordeaux, Bordeaux, pp 39–43

    Google Scholar 

  • Barbin V, Ramseyer K, Decrouez D, Burns SJ, Chamay J, Maier JL (1992) Cathodoluminescence of white marbles: an overview. Archaeometry 34:175–183

    Article  Google Scholar 

  • Cabral JMP, Vieira MCR, Carreira PM, Figueiredo MO, Pena TP, Tavares A (1992) Preliminary study on the isotopic and chemical characterization of marbles from Alto Alentejo (Portugal). In: Waelkens M, Herz N, Moens L (eds) ASMOSIA II. Ancient stones: quarrying, trade and provenance. Acta Archaeologica Lovaniensia, Monographiae 4. Leuven University Press, Leuven, pp 191–198

    Google Scholar 

  • Chlupáč I, Brzobohatý R, Kovanda J, Stráník Z (2002) Geological history of the Czech Republic. Academia, Prague (in Czech)

    Google Scholar 

  • Corazza M, Pratesi G, Cipriani C, Lo Giudice A, Rossi P, Vittone E, Manfredotti C, Pecchioni E, Manganelli Del Fá C, Fratini F (2001) Ionoluminescence and cathodoluminescence in marbles of historic and architectural interest. Archaeometry 43:439–446

    Article  Google Scholar 

  • Craig H, Craig V (1972) Greek marbles: determination of provenance by isotopic analysis. Science 176:401–403

    Article  Google Scholar 

  • Cramer T (2004) Multivariate Herkunftsanalyse von Marmor auf petrographischer und geochemischer Basis—Das Beispiel kleinasiatischer archaischer, hellenistischer und römischer Marmorobjekte der Berliner Antikensammlung und ihre Zuordnung zu mediterranen und anatolischen Marmorlagerstätten, Dissertation FG Lagerstättenforschung, Berlin, p 340. http://nbn-resolving.de/urn:nbn:de:kobv:83-opus-7426; http://opus.kobv.de/tuberlin/volltexte/2004/742/

  • Cramer T, Germann K, Heilmeyer W-D (2002) Petrographic and geochemical characterization of the Pergamon Altar marble in the Pergamon Museum, Berlin. In: Lazzarini L (ed) ASMOSIA VI. Interdisciplinary studies on ancient stones. Bottega d’Erasmo Aldo Ausilio Editore, Padova, pp 285–292

    Google Scholar 

  • Cramer T, Germann K, Kästner V (2004) Provenance determination of marble from Pergamon in the Berlin Collection of Classical Antiquities—methods and results. In: Přikryl R, Siegl P (eds) Architectural and sculptural stone in cultural landscape. The Karolinum Press, Prague, pp 53–71

    Google Scholar 

  • De Paepe P, Moens L, Roos P, Waelkens M (1988) Source analysis of the raw materials of four classical marble sculptures using chemical, microscopic and isotopic criteria. In: Herz N, Waelkens M (eds) ASMOSIA I. Classical marble: geochemistry technology trade. Kluwer Academic Publishers, Dordrecht, pp 389–398

    Google Scholar 

  • De Paepe P, Moens L, Roos P, Barbin V, Decrouez D, Ramseyer K, Thommen L, Berger E, Faltermeier K (1992) An analytical investigation of white marble sculptures from the Basel Museum of Ancient Art and Ludwig Collection, Switzerland. In: Waelkens M, Herz N, Moens L (eds) ASMOSIA II. Ancient stones: quarrying, trade and provenance, Acta Archaeologica Lovaniensia, Monographiae 4. Leuven University Press, Leuven, pp 255–262

    Google Scholar 

  • Dooley K, Herz N (1995) Provenance determination of early American marbles. In: Maniatis Y, Herz N, Basiakos Y (eds) ASMOSIA III. The study of marble and other stones used in antiquity. Archetype Publications, London, pp 243–251

    Google Scholar 

  • Dreyer W (1973) The science of rock mechanics. Part I. The strength properties of rocks. In: Series on rock and soil mechanics, 2nd edn. Trans Tech Publications, Clausthal

  • Franke W (1992) Phanerozoic structures and events in Central Europe. In: Blundell D, Freeman R, Mueller S (eds) A continent revealed: the European Geotraverse. Cambridge University Press, Cambridge, pp 164–179

    Google Scholar 

  • Germann K, Holzmann G, Winkler FJ (1980) Determination of marble provenance: limits of isotopic analysis. Archaeometry 22:99–106

    Article  Google Scholar 

  • Germann K, Gruben G, Knoll H, Valis V, Winkler FJ (1988) Provenance characteristics of Cycladic (Paros and Naxos) marbles—a multivariate geological approach. In: Herz N, Waelkens M (eds) ASMOSIA I. Classical marble: geochemistry technology trade. Kluwer Academic Publishers, Dordrecht, pp 251–262

    Google Scholar 

  • Gorgoni C, Lazzarini L, Pallante P, Turi B (2002) An updated and detailed mineropetrographic and C-O stable isotopic reference database for the main Mediterranean marbles used in antiquity. In: Herrmann J, Herz N, Newman R (eds) ASMOSIA V Interdisciplinary studies on ancient stone. Archetype Publications, London, pp 115–131

    Google Scholar 

  • Green WA, Young SMM, van der Merwe NJ, Herrmann JJ (2002) Source tracing marble: trace element analysis with inductively coupled plasma-mass spectrometry. In: Herrmann J, Herz N, Newman R (eds) ASMOSIA V. Interdisciplinary studies on ancient stone. Archetype Publications, London, pp 132–142

    Google Scholar 

  • Herrmann JJ, Barbin V (1993) The exportation of marble from the Aliki quarries on Thasos: cathodoluminescence of samples from Turkey and Italy. American J. Archaeology 97:91–103

    Article  Google Scholar 

  • Herz N (1988) The oxygen and carbon isotopic data base for classical marble. In: Herz N, Waelkens M (eds) ASMOSIA I. Classical marble: geochemistry technology trade. Kluwer Academic Publishers, Dordrecht, pp 305–314

    Google Scholar 

  • Jahn JJ (1929) On natural stones used in the St. Vitus’ Cathedral. Kámen 11:1–2 (in Czech)

    Google Scholar 

  • Johnson RA, Wichern DW (1998) Applied multivariate statistical analysis, 4th edn. Prentice-Hall Inc., New Jersey

    Google Scholar 

  • Jongste PFB, Jansen JB, Moens L, De Paepe P, Waelkens M (1992) The use of marble in Latium between 70 and 150 A.D. ICPAES for determination of the provenance of white marbles. In: Waelkens M, Herz N, Moens L (eds) ASMOSIA II. Ancient stones: quarrying, trade and provenance. Acta Archaeologica Lovaniensia, Monographiae 4. Leuven University Press, Leuven, pp 263–267

    Google Scholar 

  • Kokkorou-Alevras G, Mandi V, Grimanis AP, Maniatis Y (1995) The traditional archaeological characterisation of marble sculpture and the results of modern scientific techniques. In: Maniatis Y, Herz N, Basiakos Y (eds) ASMOSIA III. The study of marble and other stones used in antiquity. Archetype Publications, London, pp 95–102

    Google Scholar 

  • Krčálová J (1994) Renaissance. In: Merhautová A (ed) Saint Vitus’s cathedral of prague. Prague, Academia, pp 133–170 (in Czech)

    Google Scholar 

  • Lapuente MP (1995) Mineralogical, petrographical and geochemical characterization of white marbles from Hispania. In: Maniatis Y, Herz N, Basiakos Y (eds) ASMOSIA III. The study of marble and other stones used in antiquity. Archetype Publications, London, pp 151–160

    Google Scholar 

  • Lapuente P, Blanc P (2002) Marbles from Hispania: scientific approach based on cathodoluminescence. In: Herrmann J, Herz N, Newman R (eds) ASMOSIA V. Interdisciplinary studies on ancient stone. Archetype Publications, London, pp 143–151

    Google Scholar 

  • Lapuente MP, Turi B, Blanc P (2000) Marbles from Roman Hispania: stable isotope and cathodoluminescence characterization. App Geochem 15:1469–1493

    Article  Google Scholar 

  • Lazzarini L, Turi B (1999) Characterisation and differentiation of the Skyros marbles (Greece) and the Medici’s breccias (Italy). In: Schvoerer M (ed) ASMOSIA IV. Archéomatériaux: Marbres et autres roches. CRPAA-Presses Universitaires de Bordeaux, Bordeaux, pp 117–123

    Google Scholar 

  • Lazzarini L, Masi U, Tucci P (1995) Petrographic and geochemical features of the Carystian marble, ‘Cipollino verde’, from the ancient quarries of Southern Euboea (Greece). In: Maniatis Y, Herz N, Basiakos Y (eds) ASMOSIA III. The study of marble and other stones used in antiquity. Archetype Publications, London, pp 161–169

    Google Scholar 

  • Lazzarini L, Ponti G, Martinez MP, Rockwell P, Turi B (2002) Historical, technical, petrographic and isotopic features of Aphrodisian marble. In: Herrmann J, Herz N, Newman R (eds) ASMOSIA V. Interdisciplinary studies on ancient stone. Archetype Publications, London, pp 163–168

    Google Scholar 

  • Luke C, Tykot RH, Scott RW (2006) Petrographic and stable isotope analyses of late classic Ulúa marble vases and potential sources. Archaeometry 48:13–29

    Article  Google Scholar 

  • Mandi V, Vassiliou A, Maniatis Y, Grimanis AP (1995) An evaluation of the contribution of trace elements to the determination of marble provenance. In: Maniatis Y, Herz N, Basiakos Y (eds) ASMOSIA III. The study of marble and other stones used in antiquity. Archetype Publications, London, pp 207–212

    Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857

    Article  Google Scholar 

  • Mello E, Meloni S, Monna D, Oddone M (1988) A computer-based pattern recognition approach to the provenance study of Mediterranean marbles through trace elements analysis. In: Herz N, Waelkens M (eds) ASMOSIA I. Classical marble: geochemistry technology trade. Kluwer Academic Publishers, Dordrecht, pp 283–291

    Google Scholar 

  • Mentzos A, Barbin V, Herrmann JJ (2002) Cathodoluminescence and isotopic analysis of Roman and Early Byzantine architectural decoration in the Rotunda Museum, Thessaloniki. In: Herrmann J, Herz N, Newman R (eds) ASMOSIA V. Interdisciplinary studies on ancient stone. Archetype Publications, London, pp 316–327

    Google Scholar 

  • Moens L, Roos P, De Paepe P, Scheurleer RL (1992a) Provenance determination of white marble sculptures from the Allard Pierson Museum in Amsterdam, based on chemical, microscopic and isotopic criteria. In: Waelkens M, Herz N, Moens L (eds) ASMOSIA II. Ancient stones: quarrying, trade and provenance. Acta Archaeologica Lovaniensia, Monographiae 4. Leuven University Press, Leuven, pp 269–276

    Google Scholar 

  • Moens L, De Paepe P, Waelkens M (1992b) Multidisciplinary research and cooperation: keys to a successful provenance determination of white marble. In: Waelkens M, Herz N, Moens L (eds) ASMOSIA II. Ancient stones: quarrying, trade and provenance. Acta Archaeologica Lovaniensia, Monographiae 4. Leuven University Press, Leuven, pp 247–252

    Google Scholar 

  • Mrázek I (1993) Stone face of Brno. Moravské zemské muzeum, Brno (in Czech)

    Google Scholar 

  • Oddone M, Meloni S, Genova N, Maccabruni C, Pearce M (1999) The provenance of the white marble from the Torre Civica excavations (Pavia-Italy). In: Schvoerer M (ed) ASMOSIA IV. Archéomatériaux: Marbres et autres roches. CRPAA-Presses Universitaires de Bordeaux, Bordeaux, pp 141–146

    Google Scholar 

  • Petruk W (1986) Image analysis: an overview of developments. CANMET Report 86-4E, 5 pp

  • Přikryl R (2001) Some microstructural aspects of strength variation in rocks. Int. J. Rock Mech Min Sci Geomech Abstr 38(5):671–682

    Google Scholar 

  • Přikryl R (2006) Assessment of rock geomechanical quality by quantitative rock fabric coefficients: limitation and possible source of misinterpretations. Eng Geol 87:149–162

    Article  Google Scholar 

  • Přikryl R (2007) Understanding the Earth scientist’s role in the pre-restoration research of monuments: an overview. In: Přikryl R, Smith BJ (eds) Building stone decay: from diagnosis to conservation. Special Publication 271, Geological Society of London, pp 9–21

  • Ramseyer K, Decrouez D, Barbin V, Burns SJ, Moens L, De Paepe P, Roos P, Chamay J, Maier JL (1992) Provenance investigation of marble artifacts now in the collection of the Museum of Art and History in Geneva. In: Waelkens M, Herz N, Moens L (eds) ASMOSIA II. Ancient stones: quarrying, trade and provenance. Acta Archaeologica Lovaniensia, Monographiae 4. Leuven University Press, Leuven, pp 287–296

    Google Scholar 

  • Schmid J, Ramseyer K, Decrouez D (1999a) A new element for the provenance determination of white marbles: quantitative fabric analysis. In: Schvoerer M (ed) ASMOSIA IV. Archéomatériaux: Marbres et autres roches. CRPAA-Presses Universitaires de Bordeaux, Bordeaux, pp 171–175

    Google Scholar 

  • Schmid J, Ambühl M, Decrouez D, Müller S, Ramseyer K (1999b) A quantitative fabric analysis approach to the discrimination of white marbles. Archaeometry 41(2):239–252

    Article  Google Scholar 

  • Siegesmund S, Kracke T, Ruedrich J, Schwarzburg R (2010) Jewish cemetery in Hamburg Altona (Germany): State of marble deterioration and provenance. Eng Geol 115:200–208

    Article  Google Scholar 

  • Šťastná A, Přikryl R (2009) Decorative marbles from the Krkonoše-Jizera Terrane (Bohemian Massif, Czech Republic): provenance criteria. Int J Earth Sci 98(2):357–366

    Article  Google Scholar 

  • Šťastná A, Přikryl R (2010) Determination of source areas of natural stones: a methodology approach applied to impure crystalline limestones. In: Bostenaru Dan M, Přikryl R, Török Á (eds) Materials technologies and practice in historic heritage structures. Springer, Berlin, pp 157–175

    Google Scholar 

  • Šťastná A, Přikryl R, Jehlička J (2009) Methodology of analytical study for provenance determination of calcitic, calcite-dolomitic and impure marbles from historic quarries in the Czech Republic. J Cult Herit 10(1):82–93

    Article  Google Scholar 

  • Systat Software Inc. (2010) SigmaScan Pro 5.0.0. http://www.sigmaplot.com/index.php (27-10-2010)

  • Unterwurzacher M, Polleres J, Mirwald P (2005) Provenance study of marble artefacts from the Roman burial area of Faschendorf (Carinthia, Austria). Archaeometry 47:265–273

    Article  Google Scholar 

  • Valley JW (1986) Stable isotope geochemistry of metamorphic rocks. In: Valley JW, Taylor HP, O’Neil JR (eds) Stable isotopes in high temperature geological processes. Reviews in Mineralogy, vol 16, pp 445–489

Download references

Acknowledgments

Financial support for this study has been provided by a project of the Ministry of the Education, Youth and Sports of the Czech Republic, Project No. MSM 0021620855, and by a postdoctoral project of the Grant Agency in the Czech Republic (GA CR) No. 205/09/P138. Special acknowledgement is given to F. Bůzek (Laboratory of stable isotopes, Czech Geological Society) for their cooperative attitude relating to the measurement of stable isotopes; V. Erban (Laboratory of radiogenic isotopes, Czech Geological Society) for help with the petrographic data visualisation (R program). The authors are also grateful to those conservationists from the National Heritage Institute who contributed artefact samples from selected historical monuments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneta Šťastná.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12665-011-1291-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šťastná, A., Přikryl, R. & Černíková, A. Comparison of quantitative petrographic, stable isotope and cathodoluminescence data for fingerprinting Czech marbles. Environ Earth Sci 63, 1651–1663 (2011). https://doi.org/10.1007/s12665-010-0896-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-010-0896-5

Keywords

Navigation