Skip to main content
Log in

Long-term continuous in situ potentiometrically measured redox potential in anoxic groundwater with high methane and iron contents

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The in situ redox potential (Eh) in anoxic groundwater with high methane and iron contents (approximately 12.3 and 28.4 mg/L, respectively) was potentiometrically measured to identify the processes that control Eh. The measured Eh ranged from −213 to −187 mV; it had an inverse correlation with the concentration of methane and no correlation with that of iron. The saturation indices indicate that goethite and amorphous FeS were nearly at solubility equilibrium. A comparison of the measured Eh with those calculated for the particular redox pairs indicates that either Fe2+/FeOOH or CH4/CO2, but not sulfur redox pairs, controlled the measured Eh. The inverse relationship between measured Eh and methane concentration suggests possible control of the redox conditions by the CH4/CO2 redox pair. Furthermore, the equilibrium solubility state of goethite, which has higher crystallinity and lower solubility than Fe(OH)3 indicates that the iron reaction was electrochemically irreversible. This further supports the contribution of the CH4/CO2 pair to controlling the measured Eh of groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Auqué L, Gimeno MJ, Gómez J, Nilsson A-C (2008) Potentiometrically measured Eh in groundwaters from the Scandinavian Shield. Appl Geochem 23:1820–1833. doi:10.1016/j.apgeochem.2008.02.016

    Article  Google Scholar 

  • Banwart S, Gustafsson E, Laaksoharju M, Nilsson A-C, Tullborg E-L, Wallin B (1994) Large-scale intrusion of shallow water into vertical fracture zone in crystalline bedrock: initial hydrochemical perturbation during tunnel construction at the Äspö hard rock laboratory, southeastern Sweden. Water Resour Res 30:1747–1763. doi:10.1029/94WR00155

    Article  Google Scholar 

  • Bethke CM (2008) Geochemical and biogeochemical reaction modeling, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Bjerg PL, Rügge K, Pedersen JK, Christensen TH (1995) Distribution of redox-sensitive groundwater quality parameters downgradient of a landfill (Grindsted, Denmark). Environ Sci Technol 29:1387–1394. doi:10.1021/es00005a035

    Article  Google Scholar 

  • Bradley PM, Chapelle FH, Löffler FE (2008) Anoxic mineralization: environmental reality or experimental artifact? Ground Water Monit Rem 28:19–47. doi:10.1111/j.1745-6592.2007.00186.x

    Article  Google Scholar 

  • Chapelle FH, McMahon PB, Dubrovsky NM, Fujii RF, Oaksford ET, Vroblesky DA (1995) Deducing the distribution of terminal electron-accepting processes in hydrogically diverse groundwater systems. Water Resour Res 31:359–371

    Article  Google Scholar 

  • Chapelle FH, Bradley PM, Thomas MA, McMahon PB (2009) Distinguishing iron-reducing from sulfate-reducing conditions. Ground Water 47:300–305. doi:10.1111/j.1745-6584.2008.00536.x

    Article  Google Scholar 

  • Christensen TH, Bjerg PL, Banwart SA, Jakobsen R, Heron G, Albrechtsen H-J (2000) Characterization of redox conditions in groundwater contaminant plumes. J Contam Hydrol 45:165–241. doi:10.1016/S0169-7722(00)00109-1

    Article  Google Scholar 

  • Davison W, Phillips N, Tabner BJ (1999) Soluble iron sulfide species in natural waters: reappraisal of their stoichiometry and stability constants. Aquat Sci 61:23–43. doi:10.1007/s000270050050

    Article  Google Scholar 

  • Gascoyne M (2004) Hydrogeochemistry, groundwater ages and sources of salts in a granitic batholiths on the Canadian Shield, southeastern Manitoba. Appl Geochem 19:519–560. doi:10.1016/S0883-2927(03)00155-0

    Article  Google Scholar 

  • Geological Survey of Hokkaido (1983) Hydrogeological maps of Hokkaido, No.1, Wakkanai (in Japanese)

  • Gómez P, Turrero ML, Garrralón A, Peña J, Buil B, de la Cruz B, Sánchez M, Sánchez DM, Quejido A, Bajos C, Sánchez L (2006) Hydrogeochemical characteristics of deep groundwaters of the Hesperian Massif (Spain). J Iber Geol 32:113–131

    Google Scholar 

  • Grenthe I, Stumm W, Laaksuharju M, Nilsson A-C, Wikberg P (1992) Redox potentials and redox reactions in deep groundwater systems. Chem Geol 98:131–150. doi:10.1016/0009-2541(92)90095-M

    Article  Google Scholar 

  • Hama K, Kunimaru T, Metcalfe R, Martin AJ (2007) The hydrogeochemistry of argillaceous rock formations at the Horonobe URL site, Japan. Phys Chem Earth 32:170–180. doi:10.1016/j.pce.2005.12.008

    Google Scholar 

  • Harvey CF, Swartz CH, Badruzzaman ABM, Keon-Blute N, Yu W, Ali MA, Jay J, Beckie R, Niedan V, Brabender D, Oates PM, Ashfaque KN, Islam S, Hemond HF, Ahmed MF (2002) Arsenic mobility and groundwater extraction in Bangladesh. Science 298:1602–1606. doi:10.1126/science.1076978

    Article  Google Scholar 

  • Höhn R, Isenbeck-Schröter M, Kent DB, Davis JA, Jakobsen R, Jann S, Niedan V, Scholz C, Stadler S, Tretner A (2006) Tracer test with As(V) under variable redox conditions controlling arsenic transport in the presence of elevated ferrous iron concentration. J Contam Hydrol 88:36–54. doi:10.1016/j.jconhyd.2006.06.001

    Article  Google Scholar 

  • Horonobe town (2007) New energy vision in Horonobe area. (in Japanese)

  • Iwatsuki T, Arthur R, Ota K, Metcalfe R (2004) Solubility constraints on uranium concentrations in groundwaters of the Tono uranium deposits, Japan. Radiochim Acta 92:1–8. doi:10.1524/ract.92.9.789.54986

    Article  Google Scholar 

  • Iwatsuki T, Morikawa K, Hosoya S, Yoshikawa H (2009) A notice for measuring physicochemical parameters (pH, ORP) of deep groundwater. J Groundwater Hydrol 51:205–214 (in Japanese with English abstract)

    Google Scholar 

  • Kölling M (2000) Comparison of different methods for redox potential determination in natural waters. In: Schüring et al (eds) Redox fundamentals, processes and applications. Springer, Berlin, pp 42–53

    Google Scholar 

  • Korom SF (1992) Natural denitrification in the saturated zone: a review. Water Resour Res 28:1657–1668. doi:10.1029/92WR00252

    Article  Google Scholar 

  • Langmuir D (1997) Aqueous environmental chemistry. Prentice Hall, New Jersey

    Google Scholar 

  • Lindberg RD, Runnells DD (1984) Ground water redox reactions: an analysis of equilibrium state applied to Eh measurements and geochemical modeling. Science 225:925–927. doi:10.1126/science.225.4665.925

    Article  Google Scholar 

  • Lyngkilde J, Christensen TH (1992) Redox zones of a landfill leachate pollution plume (Vejen, Denmark). J Contam Hydrol 10:273–289. doi:10.1016/0169-7722(92)90011-3

    Article  Google Scholar 

  • McMahon PB, Chapelle FH (2008) Redox processes and the water quality of selected principle aquifer systems of the United States. Ground Water 44:259–271. doi:10.1111/j.1745-6584.2007.00385.x

    Article  Google Scholar 

  • McMahon PB, Cowdery TK, Chapelle FH, Jurgens BC (2009) Redox conditions in selected principle aquifers of the United State. USGS Fact Sheet 2009-3041

  • Morris JC, Stumm W (1967) Redox equilibria and measurements of potentials in the aquatic environment. Adv Chem Ser 67:270–285. doi:10.1021/ba-1967-0067.ch013

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2), a computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculations. US Geol Surv Water-Resour Invest Rep 99-4259

  • Peiffer S, Klemm O, Pecher K, Hollerung R (1992) Redox measurements in aqueous solutions—a theoretical approach to data interpretation, based on electrode kinetics. J Contam Hydrol 10:1–18. doi:10.1016/0169-7722(92)90041-C

    Article  Google Scholar 

  • Postma D, Larsen F, Hue NTM, Duc MT, Viet PH, Nhan PQ, Jessen S (2007) Arsenic in groundwater of the Red river floodplain, Vietnam: controlling geochemical processes and reactive transport modeling. Geochim Cosmochim Acta 71:5054–5071. doi:10.1016/j.gca.2007.08.020

    Article  Google Scholar 

  • Power GP, Ritche M (1983) Mixed potentials. J Chem Edu 60:1022–1026. doi:10.1021/ed060p1022

    Article  Google Scholar 

  • Smedley PL, Edmunds WM (2002) Redox patterns and trace-elements behavior in the East Midlands Triassic sandstone aquifer, UK. Ground Water 40:44–58. doi:10.1111/j.1745-6584.2002.tb02490.x

    Article  Google Scholar 

  • Stefánsson A, Arnórsson S, Sveinbjörnsdóttir ÁE (2005) Redox reactions and potentials in natural waters at disequilibrium. Chem Geol 221:289–311. doi:10.1016/j.chemgeo.2005.06.003

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley, Canada

    Google Scholar 

  • Tsuboya T, Takagi K, Takahashi H, Kurashige Y, Tase N (2001) Effect of pore structure on redistribution of subsurface water in Sarobetsu mire, northern Japan. J Hydrol 252:100–115. doi:10.1016/S0022-1694(01)00448-6

    Article  Google Scholar 

  • Walter DA (1997) Geochemistry and microbiology of iron-related well-screen encrustation and aquifer biofouling in Suffolk County, Long Island, New York. USGS Water Resour Invest Rep 97-4032

  • Whitfield M (1974) Thermodynamics limitations on the use of the platinum electrode in Eh measurements. Limnol Oceanogr 19:857–865

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Ministry of Economy, Trade and Industry of Japan. H. Tada and M. Takahashi are gratefully acknowledged for providing field and laboratory assistance. The help provided by Nippon Koei Co., Ltd. and ACE-Shisui Co., Ltd. for drilling and installing the piezometer is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiichiro Ioka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ioka, S., Sakai, T., Igarashi, T. et al. Long-term continuous in situ potentiometrically measured redox potential in anoxic groundwater with high methane and iron contents. Environ Earth Sci 64, 143–149 (2011). https://doi.org/10.1007/s12665-010-0830-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-010-0830-x

Keywords

Navigation