Environmental Earth Sciences

, Volume 64, Issue 1, pp 143–149 | Cite as

Long-term continuous in situ potentiometrically measured redox potential in anoxic groundwater with high methane and iron contents

  • Seiichiro IokaEmail author
  • Toshiaki Sakai
  • Toshifumi Igarashi
  • Yoji Ishijima
Original Article


The in situ redox potential (Eh) in anoxic groundwater with high methane and iron contents (approximately 12.3 and 28.4 mg/L, respectively) was potentiometrically measured to identify the processes that control Eh. The measured Eh ranged from −213 to −187 mV; it had an inverse correlation with the concentration of methane and no correlation with that of iron. The saturation indices indicate that goethite and amorphous FeS were nearly at solubility equilibrium. A comparison of the measured Eh with those calculated for the particular redox pairs indicates that either Fe2+/FeOOH or CH4/CO2, but not sulfur redox pairs, controlled the measured Eh. The inverse relationship between measured Eh and methane concentration suggests possible control of the redox conditions by the CH4/CO2 redox pair. Furthermore, the equilibrium solubility state of goethite, which has higher crystallinity and lower solubility than Fe(OH)3 indicates that the iron reaction was electrochemically irreversible. This further supports the contribution of the CH4/CO2 pair to controlling the measured Eh of groundwater.


Redox potential Eh Redox processes Anoxic groundwater Methane Iron 



This study was financially supported by the Ministry of Economy, Trade and Industry of Japan. H. Tada and M. Takahashi are gratefully acknowledged for providing field and laboratory assistance. The help provided by Nippon Koei Co., Ltd. and ACE-Shisui Co., Ltd. for drilling and installing the piezometer is also appreciated.


  1. Auqué L, Gimeno MJ, Gómez J, Nilsson A-C (2008) Potentiometrically measured Eh in groundwaters from the Scandinavian Shield. Appl Geochem 23:1820–1833. doi: 10.1016/j.apgeochem.2008.02.016 CrossRefGoogle Scholar
  2. Banwart S, Gustafsson E, Laaksoharju M, Nilsson A-C, Tullborg E-L, Wallin B (1994) Large-scale intrusion of shallow water into vertical fracture zone in crystalline bedrock: initial hydrochemical perturbation during tunnel construction at the Äspö hard rock laboratory, southeastern Sweden. Water Resour Res 30:1747–1763. doi: 10.1029/94WR00155 CrossRefGoogle Scholar
  3. Bethke CM (2008) Geochemical and biogeochemical reaction modeling, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  4. Bjerg PL, Rügge K, Pedersen JK, Christensen TH (1995) Distribution of redox-sensitive groundwater quality parameters downgradient of a landfill (Grindsted, Denmark). Environ Sci Technol 29:1387–1394. doi: 10.1021/es00005a035 CrossRefGoogle Scholar
  5. Bradley PM, Chapelle FH, Löffler FE (2008) Anoxic mineralization: environmental reality or experimental artifact? Ground Water Monit Rem 28:19–47. doi: 10.1111/j.1745-6592.2007.00186.x CrossRefGoogle Scholar
  6. Chapelle FH, McMahon PB, Dubrovsky NM, Fujii RF, Oaksford ET, Vroblesky DA (1995) Deducing the distribution of terminal electron-accepting processes in hydrogically diverse groundwater systems. Water Resour Res 31:359–371CrossRefGoogle Scholar
  7. Chapelle FH, Bradley PM, Thomas MA, McMahon PB (2009) Distinguishing iron-reducing from sulfate-reducing conditions. Ground Water 47:300–305. doi: 10.1111/j.1745-6584.2008.00536.x CrossRefGoogle Scholar
  8. Christensen TH, Bjerg PL, Banwart SA, Jakobsen R, Heron G, Albrechtsen H-J (2000) Characterization of redox conditions in groundwater contaminant plumes. J Contam Hydrol 45:165–241. doi: 10.1016/S0169-7722(00)00109-1 CrossRefGoogle Scholar
  9. Davison W, Phillips N, Tabner BJ (1999) Soluble iron sulfide species in natural waters: reappraisal of their stoichiometry and stability constants. Aquat Sci 61:23–43. doi: 10.1007/s000270050050 CrossRefGoogle Scholar
  10. Gascoyne M (2004) Hydrogeochemistry, groundwater ages and sources of salts in a granitic batholiths on the Canadian Shield, southeastern Manitoba. Appl Geochem 19:519–560. doi: 10.1016/S0883-2927(03)00155-0 CrossRefGoogle Scholar
  11. Geological Survey of Hokkaido (1983) Hydrogeological maps of Hokkaido, No.1, Wakkanai (in Japanese)Google Scholar
  12. Gómez P, Turrero ML, Garrralón A, Peña J, Buil B, de la Cruz B, Sánchez M, Sánchez DM, Quejido A, Bajos C, Sánchez L (2006) Hydrogeochemical characteristics of deep groundwaters of the Hesperian Massif (Spain). J Iber Geol 32:113–131Google Scholar
  13. Grenthe I, Stumm W, Laaksuharju M, Nilsson A-C, Wikberg P (1992) Redox potentials and redox reactions in deep groundwater systems. Chem Geol 98:131–150. doi: 10.1016/0009-2541(92)90095-M CrossRefGoogle Scholar
  14. Hama K, Kunimaru T, Metcalfe R, Martin AJ (2007) The hydrogeochemistry of argillaceous rock formations at the Horonobe URL site, Japan. Phys Chem Earth 32:170–180. doi: 10.1016/j.pce.2005.12.008 Google Scholar
  15. Harvey CF, Swartz CH, Badruzzaman ABM, Keon-Blute N, Yu W, Ali MA, Jay J, Beckie R, Niedan V, Brabender D, Oates PM, Ashfaque KN, Islam S, Hemond HF, Ahmed MF (2002) Arsenic mobility and groundwater extraction in Bangladesh. Science 298:1602–1606. doi: 10.1126/science.1076978 CrossRefGoogle Scholar
  16. Höhn R, Isenbeck-Schröter M, Kent DB, Davis JA, Jakobsen R, Jann S, Niedan V, Scholz C, Stadler S, Tretner A (2006) Tracer test with As(V) under variable redox conditions controlling arsenic transport in the presence of elevated ferrous iron concentration. J Contam Hydrol 88:36–54. doi: 10.1016/j.jconhyd.2006.06.001 CrossRefGoogle Scholar
  17. Horonobe town (2007) New energy vision in Horonobe area. (in Japanese)Google Scholar
  18. Iwatsuki T, Arthur R, Ota K, Metcalfe R (2004) Solubility constraints on uranium concentrations in groundwaters of the Tono uranium deposits, Japan. Radiochim Acta 92:1–8. doi: 10.1524/ract.92.9.789.54986 CrossRefGoogle Scholar
  19. Iwatsuki T, Morikawa K, Hosoya S, Yoshikawa H (2009) A notice for measuring physicochemical parameters (pH, ORP) of deep groundwater. J Groundwater Hydrol 51:205–214 (in Japanese with English abstract)Google Scholar
  20. Kölling M (2000) Comparison of different methods for redox potential determination in natural waters. In: Schüring et al (eds) Redox fundamentals, processes and applications. Springer, Berlin, pp 42–53Google Scholar
  21. Korom SF (1992) Natural denitrification in the saturated zone: a review. Water Resour Res 28:1657–1668. doi: 10.1029/92WR00252 CrossRefGoogle Scholar
  22. Langmuir D (1997) Aqueous environmental chemistry. Prentice Hall, New JerseyGoogle Scholar
  23. Lindberg RD, Runnells DD (1984) Ground water redox reactions: an analysis of equilibrium state applied to Eh measurements and geochemical modeling. Science 225:925–927. doi: 10.1126/science.225.4665.925 CrossRefGoogle Scholar
  24. Lyngkilde J, Christensen TH (1992) Redox zones of a landfill leachate pollution plume (Vejen, Denmark). J Contam Hydrol 10:273–289. doi: 10.1016/0169-7722(92)90011-3 CrossRefGoogle Scholar
  25. McMahon PB, Chapelle FH (2008) Redox processes and the water quality of selected principle aquifer systems of the United States. Ground Water 44:259–271. doi: 10.1111/j.1745-6584.2007.00385.x CrossRefGoogle Scholar
  26. McMahon PB, Cowdery TK, Chapelle FH, Jurgens BC (2009) Redox conditions in selected principle aquifers of the United State. USGS Fact Sheet 2009-3041Google Scholar
  27. Morris JC, Stumm W (1967) Redox equilibria and measurements of potentials in the aquatic environment. Adv Chem Ser 67:270–285. doi: 10.1021/ba-1967-0067.ch013 CrossRefGoogle Scholar
  28. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2), a computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculations. US Geol Surv Water-Resour Invest Rep 99-4259Google Scholar
  29. Peiffer S, Klemm O, Pecher K, Hollerung R (1992) Redox measurements in aqueous solutions—a theoretical approach to data interpretation, based on electrode kinetics. J Contam Hydrol 10:1–18. doi: 10.1016/0169-7722(92)90041-C CrossRefGoogle Scholar
  30. Postma D, Larsen F, Hue NTM, Duc MT, Viet PH, Nhan PQ, Jessen S (2007) Arsenic in groundwater of the Red river floodplain, Vietnam: controlling geochemical processes and reactive transport modeling. Geochim Cosmochim Acta 71:5054–5071. doi: 10.1016/j.gca.2007.08.020 CrossRefGoogle Scholar
  31. Power GP, Ritche M (1983) Mixed potentials. J Chem Edu 60:1022–1026. doi: 10.1021/ed060p1022 CrossRefGoogle Scholar
  32. Smedley PL, Edmunds WM (2002) Redox patterns and trace-elements behavior in the East Midlands Triassic sandstone aquifer, UK. Ground Water 40:44–58. doi: 10.1111/j.1745-6584.2002.tb02490.x CrossRefGoogle Scholar
  33. Stefánsson A, Arnórsson S, Sveinbjörnsdóttir ÁE (2005) Redox reactions and potentials in natural waters at disequilibrium. Chem Geol 221:289–311. doi: 10.1016/j.chemgeo.2005.06.003 CrossRefGoogle Scholar
  34. Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley, CanadaGoogle Scholar
  35. Tsuboya T, Takagi K, Takahashi H, Kurashige Y, Tase N (2001) Effect of pore structure on redistribution of subsurface water in Sarobetsu mire, northern Japan. J Hydrol 252:100–115. doi: 10.1016/S0022-1694(01)00448-6 CrossRefGoogle Scholar
  36. Walter DA (1997) Geochemistry and microbiology of iron-related well-screen encrustation and aquifer biofouling in Suffolk County, Long Island, New York. USGS Water Resour Invest Rep 97-4032Google Scholar
  37. Whitfield M (1974) Thermodynamics limitations on the use of the platinum electrode in Eh measurements. Limnol Oceanogr 19:857–865CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Seiichiro Ioka
    • 1
    Email author
  • Toshiaki Sakai
    • 1
  • Toshifumi Igarashi
    • 2
  • Yoji Ishijima
    • 1
  1. 1.Horonobe Research Institute for the Subsurface EnvironmentHokkaidoJapan
  2. 2.Laboratory of Terrestrial Environment Engineering, Graduate School of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations