Advertisement

Environmental Earth Sciences

, Volume 64, Issue 1, pp 107–118 | Cite as

Estimation of groundwater recharge of shallow aquifer on humid environment in Yaounde, Cameroon using hybrid water-fluctuation and hydrochemistry methods

  • A. Fouépé TakounjouEmail author
  • J. R. Ndam Ngoupayou
  • J. Riotte
  • G. E. Takem
  • G. Mafany
  • J. C. Maréchal
  • G. E. Ekodeck
Original Article

Abstract

A study of environmental chloride and groundwater balance has been carried out in order to estimate their relative value for measuring average groundwater recharge under a humid climatic environment with a relatively shallow water table. The hybrid water fluctuation method allowed the split of the hydrologic year into two seasons of recharge (wet season) and no recharge (dry season) to appraise specific yield during the dry season and, second, to estimate recharge from the water table rise during the wet season. This well elaborated and suitable method has then been used as a standard to assess the effectiveness of the chloride method under forest humid climatic environment. Effective specific yield of 0.08 was obtained for the study area. It reflects an effective basin-wide process and is insensitive to local heterogeneities in the aquifer system. The hybrid water fluctuation method gives an average recharge value of 87.14 mm/year at the basin scale, which represents 5.7% of the annual rainfall. Recharge value estimated based on the chloride method varies between 16.24 and 236.95 mm/year with an average value of 108.45 mm/year. It represents 7% of the mean annual precipitation. The discrepancy observed between recharge value estimated by the hybrid water fluctuation and the chloride mass balance methods appears to be very important, which could imply the ineffectiveness of the chloride mass balance method for this present humid environment.

Keywords

Recharge Specific yield Tropical forest Water balance Yaounde GIS 

Notes

Acknowledgments

The present work was supported by grants from the International Foundation for Science (IFS). Sincere thank to Hell J.V., Director of Institute for Geological and Mining Research (IRGM), Yaounde-Cameroon for infrastructure facilities. The authors thank the LMTG Laboratory of Toulouse-France for water samples analysis and two anonymous reviewers who greatly improved the quality of the manuscript.

References

  1. Beekman HE, Xu Y (2003) Review of groundwater recharge estimation in arid and semi-arid Southern Africa. In: Xu Y, Beekman HE (eds) Groundwater recharge estimation in Southern Africa, UNESCO IHP Series, vol 64, p 206. ISBN 92-9220-000-3Google Scholar
  2. Boeglin JL, Ndam JR, Braun JJ (2003) Composition of the different reservoir waters in a tropical humid area: example of the Nsimi catchment (Southern Cameroon). J Afr Earth Sci 37:103–110CrossRefGoogle Scholar
  3. Bromley J, Edmunds WM, Fellman E, Brouwer J, Gaze SR, Sudlow J, Taupin JD (1997) Estimation of rainfall inputs and direct recharge to the deep unsaturated zone of southern Niger using the Chloride profile method. J Hydrol 188–189:139–154CrossRefGoogle Scholar
  4. Cook PG, Leaney FW, Jolly ID (2001) Groundwater recharge in the Mallee Region and salinity implications for the Murray River—a review. CSIRO Land and Water Technical Report 45/01, CSIRO Publishing, Australia, p 133Google Scholar
  5. De Vries JJ, Simmers I (2002) Groundwater recharge: an overview of processes and challenges. Hydrogeol J 10(1):5–17CrossRefGoogle Scholar
  6. Delin GN, Healy RW, Lorenz DL, Nimmo JR (2007) Comparison of local- to regional-scale estimates of ground-water recharge in Minnesota, USA. J Hydrol 334(1–2):231–249CrossRefGoogle Scholar
  7. Djeuda Tchapnga H, Tanawa E, Temgoua E, Siakeu J, Ngo Massana B (1999) Mode de circulation, mécanismes de recharge et temps relatifs de séjour des eaux des nappes souterraines des altérites du milieu cristallin: cas du bassin versant de l’Anga’a, Yaoundé. Cameroun Press University, Yaoundé, pp 117–126Google Scholar
  8. Egboka BCE, Cherry JA, Farvolden RN, Frind EO (1983) Migration of contaminants in groundwater at a landfill: a case study 3. Tritium as an indicator of dispersion and recharge. J Hydrol 63:51–80CrossRefGoogle Scholar
  9. Eriksson E, Khunakasem V (1969) Chloride concentration in groundwater, recharge rate of deposition of chloride in the Israel coastal plain. J Hydrol 7:178–197CrossRefGoogle Scholar
  10. Fantong WY, Satake H, Aka FT, Ayonghe SN, Asai K, Mandal AK, Ako AA (2009) Hydrochemical and isotopic evidence of recharge, apparent age, and flow direction of groundwater in Mayo Tsanaga River Basin, Cameroon: bearings on contamination. Environ Earth Sci. doi: 10.1007/s12665-009-0173-7 Google Scholar
  11. Flury M, Fluhler H, Jury WA, Leuenberger J (1994) Susceptibility of soils to preferential flow of water: a field study. Water Resour Res 30:1945–1954CrossRefGoogle Scholar
  12. Foster SSD (1998) Groundwater recharge and pollution vulnerability of British aquifers: a critical overview. In: Robins NS (ed) Groundwater pollution aquifer recharge and vulnerability. Geological Society, London, special publications, vol 130, pp 7–22Google Scholar
  13. Fouépé Takounjou A, Gurunadha Rao VVS, Ndam Ngoupayou J, Sigha Nkamdjou L, Ekodeck GE (2009a) Groundwater flow modelling in the upper Anga’a river watershed, Yaounde, Cameroon. Afr J Environ Sci Technol 3(10):341–352Google Scholar
  14. Fouépé Takounjou A, Kengni L, Gurunadha Rao VVS, Ndam Ngoupayou JR (2009b) Transfer of moisture through the unsaturated zone in the tropical forest using the neutron probe. Int J Environ Sci Tech 6(3):379–388Google Scholar
  15. Garrels RM, MacKenzie FT (1971) Evolution of sedimentary rocks. Norton, New YorkGoogle Scholar
  16. Gaye CB, Edmunds WM (1996) Groundwater recharge estimation using chloride, stable isotopes and tritium profiles in the sands of northwestern Senegal. Environ Geol 27:246–251CrossRefGoogle Scholar
  17. Geoffrey ND, Risse DW (2007) Ground-water recharge in humid areas of the United States—a summary of ground-water resources program studies, 2003–2006. Ground-water resources program, U.S. Geological survey fact sheet 2007-3007Google Scholar
  18. Healy R, Cook P (2002) Using groundwater level to estimate recharge. Hydrogeol J 10:91–109CrossRefGoogle Scholar
  19. Johnston CD (1987) Preferred water flow and localised recharge in a variable regolith. J Hydrol 94:129–142CrossRefGoogle Scholar
  20. Kalla MF (2008) Comportement hydrodynamique d’un aquifère à nappe libre en zone urbaine de Yaounde. M.Sc thesis, Univ. Yaounde I, p 99Google Scholar
  21. Kearns AK, Hendrickx JMH (1998) Temporal variability of diffuse groundwater recharge in New Mexico. Technical Report No. 309, pp 43Google Scholar
  22. Kruseman G (1997) Recharge from intermittent flow. In: Recharge of phreatic aquifers in (semi-)arid areas. In: Simmers I (ed) International Association of Hydrogeologists, vol 19. Balkema, RotterdamGoogle Scholar
  23. Lerner DN, Issar A, Simmers I (1990) A guide to understanding and estimating natural recharge, I. International contribution to hydrogeology, vol 8. A. H publication, Verlag Heinz Heisse, 345 ppGoogle Scholar
  24. Luckey RR, Gutentag ED, Heimes FJ, Weeks JB (1986) Digital simulation of ground-water flow in the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. US Geological Survey, Professional Paper 1400-D, 57 pGoogle Scholar
  25. Maréchal JC, Dewandel B, Ahmed S, Galeazzi L, Zaidi FK (2006) Combined estimation of specific yield and natural recharge in a semi-arid groundwater basin with irrigated agriculture. J Hydrol 329:281–293CrossRefGoogle Scholar
  26. Maréchal JC, Murari RRV, Riotte J, Vouillamoz JM, Mohan Kumar MS, Ruiz L, Sekhar M, Braun JJ (2009) Indirect and direct recharges in a tropical forested watershed: Mule Hole, India. J Hydrol 364(3–4):272–284CrossRefGoogle Scholar
  27. Mfopou Mewouo YC, Ndam Ngoupayou JR, Yemefack M, Agoumé V (2009) Physico-chimie des pluies du sud Cameroun forestier. Tropicultura 27(4):239–245Google Scholar
  28. Naik PK, Awasthi AK (2003) Groundwater resources assessment of the Koyna River basin, India. Hydrogeol J 11:582–594CrossRefGoogle Scholar
  29. Ngounou Ngatcha B, Mudry J, Sarrot RJ (2007) Groundwater Recharge from Rainfall in the Southern Border of Lake Chad in Cameroon. World Appl Sci J 2(2):125–131Google Scholar
  30. Nolan BT, Healy RW, Taber PE, Kimberlie Perkins, Hitt KJ, Wolock DM (2007) Factors influencing ground-water recharge in the eastern United States. J Hydrol 332(1–2):187–205CrossRefGoogle Scholar
  31. O’Brien R, Keller CB, Smith JL (1996) Multiple tracers of shallow ground water flow recharge in hilly loess. Groundwater 34(4):675–682Google Scholar
  32. Olivry JC (1986) Fleuves et rivières du Cameroun. Monographies hydrologiques, MESRES/ORSTOM, no 9, 733 ppGoogle Scholar
  33. Robins NS (1998) Groundwater pollution, aquifer recharge and vulnerability. Geol Soc Lond Spec Publ 130:224CrossRefGoogle Scholar
  34. Sami K, Hughes DA (1996) A comparison of recharge estimates to a fractured sedimentary aquifer in South Africa from a chloride mass balance and an integrated surface—subsurface model. J Hydrol 179:111–136CrossRefGoogle Scholar
  35. Sapkota B (2003) Hydrogeological conditions in the southern part of Dang valley, mid-western Nepal. Himal J Sci 1(2):119–122Google Scholar
  36. Scanlon BR, Goldsmith RS (1997) Field study of spatial variability in unsaturated flow beneath and adjacent to playas. Water Resour Res 33(10):2239–2252CrossRefGoogle Scholar
  37. Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10(1):18–39CrossRefGoogle Scholar
  38. Sekhar M, Braun JJ, Hayagreeva Rao KV, Ruiz L, Robain H, Viers J, Ndam JR, Dupre B (2008) Hydrogeochemical modeling of organo-metallic colloids in the Nsimi experimental watershed, South Cameroon. Environ Geol 54:831–841CrossRefGoogle Scholar
  39. Selaolo ET, Beekman H, Gieske ASM, De Vries JJ (2003) Multiple tracer profiling in Botswana. In: Xu Y, Beekman H (eds) Groundwater recharge estimation in Southern Africa. UNESCO, Paris, ISBN 92-9220-000-3Google Scholar
  40. Sigha Mkamdjou L, Galy Lacaux C, Pont V, Richard S, Sighomnou D, Lacaux JP (2003) Rainwater chemistry and wet deposition over the equatorial forested ecosystem of Zoetele, Cameroon. J Atmos Chem 46:173–198CrossRefGoogle Scholar
  41. Sighomnou D (2004) Analyse et redéfinition des régimes climatiques et hydrologiques du Cameroun: perspectives d’évolution des ressources en eau. Thèse doct Etat Univ Yaoundé I, Cameroun, 289 ppGoogle Scholar
  42. Simmers I (1988) Estimation of natural groundwater recharge. D. Reidel Publishing Co, Boston, MA, 510 ppGoogle Scholar
  43. Simmers I, Hendrickx JMH, Kruseman GP, Rushton KR (eds) (1997) Recharge of phreatic aquifers in (semi-) arid areas. IAH International Contributions to Hydrogeology, vol 19. A. A. Balkema, Rotterdam, 277 ppGoogle Scholar
  44. Sophocleous MA (1991) Combining the soil water balance and water-level fluctuation methods to estimate natural groundwater recharge: practical aspects. J Hydrol 124:229–241CrossRefGoogle Scholar
  45. Taheri TA, Voudouris KS, Eini M (2007) Groundwater balance, safe yield and recharge feasibility in a semi-arid environment: a case study from western part of Iran. J Appl Sci 7(20):2967–2976CrossRefGoogle Scholar
  46. Temgoua E, Djeuda Tchapnga HB, Tanawa E, Guenat C, Pfeifer HR (2005) Groundwater fluctuations and footslope ferricrete soils in the humid tropical zone of Southern Cameroon. Hydrol Proc 19(16):3097–3111CrossRefGoogle Scholar
  47. Thornthwaite CW, Mather JR (1957) Instructions and tables for computing the potential evapotranspiration and the water balance. Publ Climatol, Laboratory of Climatology, Dexel Institute of Technology, Centerton, New Jersey, USA 10(3):183–311Google Scholar
  48. Viers J, Dupre B, Braun JJ, Freydier R, Greenberg S, Ndam Ngoupayou J, Sigha Nkamdjou L (2001) Evidence for non-conservative behaviour of chlorine in humid tropical environments. Aquat Geochem 7:127–154CrossRefGoogle Scholar
  49. White WN (1932) A method of estimating groundwater supplies based on discharge by plants and evaporation from soil. US Geological Survey Water Supply Paper 659-AGoogle Scholar
  50. Wood WW, Sanford WE (1995) Chemical and isotopic methods for quantifying ground-water recharge in a regional, semiarid environment. Groundwater 33:458–468Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • A. Fouépé Takounjou
    • 1
    • 2
    Email author
  • J. R. Ndam Ngoupayou
    • 2
  • J. Riotte
    • 3
  • G. E. Takem
    • 1
  • G. Mafany
    • 1
  • J. C. Maréchal
    • 4
  • G. E. Ekodeck
    • 2
  1. 1.Institute for Geological and Mining Research, Hydrological Research CentreYaoundeCameroon
  2. 2.Department of Earth SciencesUniversity of Yaounde IYaoundeCameroon
  3. 3.Indo-French Cell for Water SciencesIndian Institute of ScienceBangaloreIndia
  4. 4.LMTG, Université de Toulouse, CNRS, IRDToulouseFrance

Personalised recommendations