Advertisement

Environmental Earth Sciences

, Volume 64, Issue 1, pp 85–95 | Cite as

Geochemical and isotopic composition of groundwater in the Complex Terminal aquifer in southwestern Tunisia, with emphasis on the mixing by vertical leakage

  • Meriem Tarki
  • Lassaad DassiEmail author
  • Younes Hamed
  • Younes Jedoui
Original Article

Abstract

The Complex Terminal (CT) confined aquifer of the Djerid basin, southwestern Tunisia, was studied using major ion concentrations and stable isotope contents in order to (1) investigate the changes on its hydrodynamic functioning due to the long-term over-pumping and the large-scale flood irrigation practices, (2) determine the principal mineralization processes of its fossil groundwater, and (3) examine the mode of recharge of this aquifer and whether it contains part of modern hydrological regime. The observed geochemical patterns indicated that the main mineralization processes affecting the CT groundwater water/rock interactions and mixing. The native Na > Cl and Cl > SO4 > Ca > Na waters, resulting from the dissolution of halite and gypsum and from pyrite oxidation, interacted with those of the underlying and the overlying aquifers without changing their chemical facies. Stable isotope data provided evidences about upward and downward leakage into the CT aquifer and their relationships with anthropogenic activities. They demonstrated that the long-term over-pumping of the CT aquifer, which contributed to the loss of its potentiometric pressure, favored the upward leakage of the artesian deep groundwater along parts of the major faults. Moreover, the large-scale flood irrigation practices in the oases domain, which ensured the recharge of the shallow water table by return flow, enhanced the downward leakage toward the CT aquifer.

Keywords

Complex Terminal aquifer Hydrochemistry Stable isotopes Water/rock interaction Mixing Upward and downward leakage 

References

  1. Abidi B (1993) Contribution à l’étude hydrogéologique de la région de Chott El Gharsa Nord. Doc Tech, DGRE, Tunis, 150 pGoogle Scholar
  2. Adams S, Titus R, Pietersen K, Tredoux G, Harris C (2001) Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo, South Africa. J Hydrol 241:91–103CrossRefGoogle Scholar
  3. Appelo CAJ, Postma D (1993) Geochemistry, groundwater and pollution, 2nd edn. Balkema, RotterdamGoogle Scholar
  4. Bel F, Demargne F (1966) Etude géologique du Continental Terminal; DEC, ANRH, Alger, Algérie, 24 planches, 22 pGoogle Scholar
  5. Belloumi M, Matoussi M (2006) A stochastic frontier approach for measuring technical efficiencies of date farms in southern Tunisia. Agric Resour Econ Rev 35:285–298Google Scholar
  6. British Geological Survey (BGS) (1997) Recharge characteristics and ground water quality of the Grand Erg Occidental. Final Report EC (Avicenne) CT93AVI0015Google Scholar
  7. Chadha DK (1999) A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeol J 7:431–439CrossRefGoogle Scholar
  8. Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, Boca RatonGoogle Scholar
  9. Coleman ML, Shepherd TJ, Durham JJ, Rouse JE, Moore GR (1982) Reduction of water with zinc for hydrogen isotope analysis. Anal Chem 54:993–995CrossRefGoogle Scholar
  10. Coplen TB (1988) Normalization of oxygen and hydrogen isotope data. Chem Geol 72:293–297Google Scholar
  11. Cornet A (1964) Introduction a` l’hydrogéologie saharienne. Revue de Géographique, Physique et de Géologie Dynamique (part 2), VI 1:5–72Google Scholar
  12. Craig H (1961) Isotopic variation in meteoric waters. Science 133:1702–1703CrossRefGoogle Scholar
  13. Daoud D (1995) Caractérisation géochimique et isotopique des eaux souterraines et estimation du taux d’évaporation dans le bassin du Chott Chergui (zone semi-aride), Algérie. Thèse Doctorat Univ Paris-Sud, Orsay, p 256Google Scholar
  14. Edmunds W, Guendouz A, Mamou A, Moulla A, Shand P, Zouari K (2003) Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element isotopic indicators. Appl Geochem 18:805–822CrossRefGoogle Scholar
  15. Epstein S, Mayeda TK (1953) Variations of 18O content of waters from natural sources. Geochim Cosmochim Acta 4:213–224CrossRefGoogle Scholar
  16. ERESS (1972) Etude des ressources en eau de Sahara septentrional. UNESCO, ParisGoogle Scholar
  17. Fontes JCh, Coque R, Dever L, Filly A, Mamou A (1983) Paléohydrologie isotopique de l’wadi el Akarit (Sud tunisien) au Pléistocène et à l’Holocène. Pal Pal Pal 43:41–61Google Scholar
  18. Gonfiantini R, Dincer T, Derekoy AM (1974) Environmental isotope hydrology in the Hodna region, Algeria. In: Isotope techniques in groundwater hydrology. Proceeding symposium. IAEA, Vienna, pp 293–316Google Scholar
  19. Guendouz A, Moulla AS (1996) Drainance de la nappe profonde du Continental Intercalaire vers les aquifères superficiels à Ourgala: arguments isotopiques. Colloque International sur l’utilisation des techniques isotopiques dans les domaines des ressources en eau et en sol, Mahdia (Tunisie)Google Scholar
  20. Guendouz A, Moulla AS, Edmunds W, Shand P, Poole J, Zouari K, Mamou A (1997) Paleoclimatic information contained in groundwater of the Grand Erg Oriental. N. Africa. Proceeding symposium. IAEA, Vienna, p 349Google Scholar
  21. Horriche JF (2004) Contribution a l’analyse et a la rationalisation des réseaux piézométriques. Thèse Univ Tunis, Tunisia, p 260Google Scholar
  22. Jeribi L (1997) Contribution à la mise en évidence de l’alimentation de la nappe du Complexe Terminal à partir de la chaîne de Metlaoui-Gafsa. DEA Univ Tunis, Tunisia, p 96Google Scholar
  23. Kamel S (2007) Caractérisation hydrodynamique et géochimique des aquifères de Djérid (Sud-ouest Tunisien). Thèse Doctorat Univ Tunis, Tunisia, p 230Google Scholar
  24. Kamel S, Dassi L, Zaouri K, Abidi B (2005) Geochemical and isotopic investigation of the aquifer system in the Djerid-Nefzoua basin, southern Tunisia. Env Geol 49:59–170CrossRefGoogle Scholar
  25. Mamou A (1990) Caractéristiques et évaluation des ressources en eau du sud tunisien. Thèse Doctorat Univ Paris-Sud, Orsay, p 320Google Scholar
  26. Moumni L (2001) La nappe des grés de Sidi Aïch ou Continental Intercalaire de Djérid Rap. Int. DGRE/OSS, p 43Google Scholar
  27. Pallas P (1980) Water resources of the Socialist People’s Arab Libyan Republic. In: Salem MJ, Busrewille MT (eds) The geology of Libya, vol II. ed. Academic Press, LondonGoogle Scholar
  28. Plummer LN, Prestemon E, Parkhurst DL (1992) An interactive code (netpath) for modelling net geochemical reactions along a flow path. Techniques of water resources investigations of US geological survey, pp 91–4078Google Scholar
  29. Rouatbi R (1967) Contribution à l’étude hydrogéologique du karst enterré de Gabès Sud. Thèse Doctorat Univ Montpellier, FranceGoogle Scholar
  30. Sadek MA, Abd El-Samie SG (2001) Pollution vulnerability of the Quaternary aquifer near Cairo, Egypt, as indicated by isotopes and hydrochemistry. Hydrogeol J 9:273–281CrossRefGoogle Scholar
  31. SASS (2002) Le système aquifère du Sahara septentrional: une conscience de bassin. OSS, Vol et Annexes. OSS/SASS, TunisGoogle Scholar
  32. Sonntag C, Klitzsch E, Lohnert EP, Munnich KO, Junghans C, Thorweihe U, Weistroffer K, Swailem FM (1978) Palaeoclimatic information from deuterium and oxygen-18 in carbon-14-dated north Saharian groundwaters. Isotope Hydrology. IAEA, Vienna, pp 569–581Google Scholar
  33. Tarki M (2008) Relations hydrauliques entre les aquifères superposés du bassin de Djérid: approches géochimique et isotopique. DEA, Univ Sfax, Tunisia, p 95Google Scholar
  34. Wallin B, Gaye C, Gourcy L, Aggarwal P (2005) Isotope methods for management of shared aquifers in Northern Africa. Groundwater 43:744–749Google Scholar
  35. Zargouni F (1986) Tectonique de l’Atlas méridional de Tunisie, évolution géométrique et cinématique des structures en zones de cisaillement. Thèse Doctorat Univ Louis Pasteur, Strasbourg. FranceGoogle Scholar
  36. Zouari K, Mamou A (1992) Les systèmes aquifères du Sud tunisien: Caractéristiques hydrochimiques et isotopiques, conditions de recharge et optimisation de la gestion. Actes du congrès International, Marrakech, pp 41–44Google Scholar
  37. Zouari K, Mamou A (1998) Etude isotopique et hydrochimique des systèmes multicouches de Gafsa et de Hajeb Aioun-Djilima (Tunisie Centrale). IAEA, Vienna, p 70Google Scholar
  38. Zouari K, Aranyssoy JF, Mamou A, Fontes J CH (1985) Etude isotopique et géochimique des mouvements et de l’évolution des solutions de la zone aérée des sols sous climats semi-aride (Sud tunisien). In: Stable and radioactive isotopes in the study of the unsaturated soil zone. IAEA, Vienna, pp 121–144Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Meriem Tarki
    • 1
  • Lassaad Dassi
    • 1
    • 2
    Email author
  • Younes Hamed
    • 2
    • 3
  • Younes Jedoui
    • 1
  1. 1.Unité des Recherche Hydro-sciences AppliquéesISSTEGabèsTunisia
  2. 2.Département des Sciences de la TerreFaculté des Sciences de GabèsGabèsTunisia
  3. 3.Laboratoire Eau-Energie-EnvironnementENISSfaxTunisia

Personalised recommendations