Environmental Earth Sciences

, Volume 64, Issue 1, pp 57–71 | Cite as

Origin of flooding water through hydrogeochemical identification, the Buenos Aires plain, Argentina

  • M. M. Alconada-Magliano
  • J. R. Fagundo-Castillo
  • J. J. Carrillo-RiveraEmail author
  • P. G. Hernández
Original Article


Hydrogeochemical behaviour of samples of surface and groundwater collected on a cross-section from Mendoza to the Buenos Aires provinces was studied based on chemical trends, mass balance and water mixing. Hydrogeochemical modelling included major, minor elements as well as stable isotopes (deuterium and 18-O). The area investigated is located in the “Médanos Longitudinales” (longitudinal dunes) of the northwest of Buenos Aires province, Argentina. The study area is subject to alternating flooding and drought. Rainfall and surface water subsequently transferred by rivers, canals and lagoons have been usually considered responsible for local flooding. For this study, origins of excess water were investigated using physical and chemical characteristics of the water involved. The prevalence of groundwater inflow to rainfall events was proposed based on data interpretation. Groundwater influence of flows of local and intermediate nature were defined and the importance of recharge, transit and discharge zones was highlighted. Lagoon floodwater, as well as groundwater from observation wells and production boreholes, show components of intermediate origin. Regional recharge water was identified in Mendoza and San Luis provinces. Their discharge zone was inferred to be located beyond the Buenos Aires province.


Hydrogeochemistry Hydrogeochemical modelling Flooding Groundwater flow systems Stable isotopes Argentina 


  1. Alconada MMM (2008) Flooding processes in the longitudinal dunes of the northwest of the Buenos Aires Province, Argentina, its relation to vegetation, soil and water: developing options (in Spanish). Thesis for the degree of Doctor in Geography, UNAM, pp 650Google Scholar
  2. Alconada-Magliano MM, Bussoni A, Rosa R, Carrillo-Rivera JJ (2009) El bio-drenaje para el control del exceso hídrico en la Pampa Arenosa, Buenos Aires, Argentina. Investigaciones Geográficas 68:50–72Google Scholar
  3. APHA-AWWA-WPCF (1989) Standard methods for the examination of water and wastewater, vol 17. Washington, DCGoogle Scholar
  4. Back W, Cherry RN, Hanshaw BB (1966) Chemical equilibrium between the water and minerals of a carbonate aquifer. Nat Speleol Soc Bull 28(3):119–126Google Scholar
  5. Carrillo-Rivera JJ, Varsányi I, Kovács LÓ, Cardona A (2007) Tracing groundwater flow systems with hydrogeochemistry in contrasting geological environments. Water Air Soil Pollut 184:77–103CrossRefGoogle Scholar
  6. Cingolani CA (2005) Unidades morfoestructurales y estructurales menores de la provincia de Buenos Aires. XVI Congreso Geológico Argentino, Chapter II 21–30Google Scholar
  7. Dangavs N (2005) Los ambientes acuáticos de la provincia de Buenos Aires. XVI Congreso Geológico Argentino, La Plata. Chapter XIII: 219–236Google Scholar
  8. Drever JY (1988) The geochemistry of natural water, 2nd edn. Prentice Hall, Englewood Cliffs, p 437Google Scholar
  9. Edmunds WM, Smedley PL (2000) Residence time indicators in groundwater: the East Midlands Triassic sandstone aquifer. Appl Geochem 15:6737–6752CrossRefGoogle Scholar
  10. Etchichurry MC, Tofalo OR, Forzinetti ME (1988) Composición de la fracción psamitica de sedimentos actuales de la provincial de Buenos Aires y su significado tectónico. Seg Tour Geol Bon, Bahía BlancaGoogle Scholar
  11. Fagundo JR (1990) Evolución química y relaciones empíricas en aguas naturales. Efecto de los factores geológicos, hidrogeológicos y ambientales. Hidrogeología (Granada) 5:33–46 (ISSN 0214-1.248)Google Scholar
  12. Fagundo JR (1998) Patrones hidrogeoquímicos y relaciones matemáticas en aguas naturales. Ingeniería Hidráulica 19(2):62–78 (ISSN 0253-0678)Google Scholar
  13. Fagundo-Castillo JR, Carrillo-Rivera JJ, Antigüedad-Auzmendi I, González-Hernández P, Leláes-Diaz R, Hernández-Diaz R, Cáceres-Govea D, Hernández-Santana JR, Suárez-Muñoz M, Melán-Rodriguez C, Rodríguez-Piña M (2008) Chemical and geological control of spring water in eastern Guaniguanico mountain range, Pinar del Rio, Cuba. Env Geol 55(2):247–267CrossRefGoogle Scholar
  14. Fagundo-Sierra J, Fagundo JR, González P, Suárez M (2001) Modelación de las aguas naturales. Contribución a la Educación y la Protección Ambiental, vol VII. ISCTN, La Habana. 959-7136-13-9Google Scholar
  15. Garrels R, Mackencie FT (1967) Origin of the chemical composition of some springs and lakes. Equilibrium concepts in natural water systems. Am Chem Soc Adv Chem Ser 67:222–242Google Scholar
  16. González N (2005) Los ambientes hidrogeológicos de la provincia de Buenos Aires. XVI Congreso Geológico Argentino, La Plata. Cap XXII. pp 359–374Google Scholar
  17. McDonald MG, Harbaugh AW (1996) A modular three-dimensional finite-difference ground-water flow model US Geological Survey, Techniques of Water-Resources Investigations, Book 6, Chapter A1Google Scholar
  18. Moncaut CA (2003) Inundaciones y sequías tienen raíces añejas en la pampa bonaerense (1576–2001). Capitulo 1: 27-48. En O. Maiola, Gabellone, N. y M. Hernández (ed) Inundaciones en la región pampeana. Ed. UNLP, ArgentinaGoogle Scholar
  19. Mook WG (2001) Environmental isotopes in the hydrological cycle, principles and applications. V.1 Centre for isotope Research, Croningen UNESCO/IAEA seriesGoogle Scholar
  20. Parkhurst DL, DC Thorstenson, LN Plummer (1980) PHREEQC. A computer program for geochemical calculations. US Geol Surv Water Resour Inv 90–92, 210 ppGoogle Scholar
  21. Pesce H, F Miranda (2003) Catálogo de manifestaciones termales de la República de Argentina. Vol. I-II Región Noroeste. SEGEMAR, Buenos Aires. 1666–3462Google Scholar
  22. PMI, Plan Maestro Integral Cuenca del Río Salado (1999) Ministerio de Economía de la Provincia de Buenos Aires-Halcrow-Banco Mundial. Volumen principal y 14 Anexos en CD. 1300 pGoogle Scholar
  23. Rankama K, Sahama THG (1964) Geoquímica. ed. Aguilar, España. 861 ppGoogle Scholar
  24. Stiff HA (1951) The interpretation of chemical water analysis by means of pattern, Jour. Petrol Technol 3(10):15–17Google Scholar
  25. Tóth J (2000) Las aguas subterráneas como agente geológico: causas, procesos y manifestaciones. Boletín Geológico y Minero, 111 (4):9–25. Instituto Geológico GeoMinero (España) (ISSN 0366-0176)Google Scholar
  26. Vinograd NA (2004) Formation of mineral and thermal waters of some artesian basins in Russia. Env Geol 46:675–679CrossRefGoogle Scholar
  27. Zárate M, J Rabanesse (2005) Geomorfología de la Provincia de Buenos Aires. XVI Congreso Geológico Argentino, La Plata. Capítulo VIII: 119–138Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • M. M. Alconada-Magliano
    • 1
  • J. R. Fagundo-Castillo
    • 2
  • J. J. Carrillo-Rivera
    • 3
    Email author
  • P. G. Hernández
    • 2
  1. 1.CISAUA (MAA-UNLP) y FCAgFsUniversidad Nacional de La PlataBuenos AiresArgentina
  2. 2.Centro Nacional de Medicina Natural y TradicionalHavanaCuba
  3. 3.Instituto de GeografíaUniversidad Nacional Autónoma de MéxicoMéxicoMexico

Personalised recommendations