Environmental Earth Sciences

, Volume 63, Issue 7–8, pp 1529–1543 | Cite as

Salt damage and microclimate in the Postumius Tomb, Roman Necropolis of Carmona, Spain

  • D. Benavente
  • S. Sanchez-Moral
  • A. Fernandez-Cortes
  • J. C. Cañaveras
  • J. Elez
  • C. Saiz-Jimenez
Special Issue


The necropolis of Carmona (Seville, Spain) is one of the most significant Roman burial sites in southern Spain used during the first and second centuries ad. Of its more than 600 tombs, the Postumius Tomb is one of the best examples of a tomb affected by severe salt damage. To define safe microclimatic conditions for its conservation, environmental parameters were recorded from June 2007 to April 2009, both inside and outside the tomb, and mineralogical, textural, petrophysical, and durability characterization studies of the host-rock were made. Experimental tests revealed a high susceptibility to salt deterioration of a host-rock (calcarenite) with low mechanical properties and a complex porous medium that favors salt weathering, water condensation, and capillary rise. The analysis of the weathered material showed the presence chiefly of gypsum (CaSO4·2H2O), thenardite (Na2SO4) and halite (NaCl) in the tomb of Postumius, with alteration that was more intensive in spring and autumn, and less so during summer months. Salt damage activity was calculated by quantifying the number of transitions of crystallization–dissolution of saline phases. The calculated seasonality for water condensation and salt damage is coeval. The host-rock alteration is in accord with the estimated salt decay, and was more intensive in spring and autumn and less so during summer. The seasonality of halite transitions is similar to that of the sodium sulfate system, which suggests that salt weathering is produced by the two types of salts. By combining different methodological approaches (pore structure, water condensation, salt and environmental conditions), it is possible to explain why salt crystallization occurs in a tomb with hygrometric conditions that are not suitable for this process to occur. These methodological approaches are also used to other rock-decaying processes, such as the development of microorganisms, clay swelling and calcite dissolution by NaCl- and CO2-rich pore waters, and can be used to predict safe threshold microclimatic conditions that minimize all rock-decaying processes.


Salt damage Environmental monitoring Preventive conservation Roman tombs 


  1. Akatova E (2009) Estudio comparativo de las comunidades microbianas en las tumbas de la Necropolis de Carmona basado en técnicas de biología molecular. Dissertation, University of Seville, SpainGoogle Scholar
  2. Anon (1999a) Natural stone test methods. Determination of compressive strength, EN-1926Google Scholar
  3. Anon (1999b) Natural stone test methods. Determination of resistance to salt crystallization, EN-12370Google Scholar
  4. Ariño X, Saiz-Jimenez C (1997) Deterioration of the Elephant tomb (Necropolis of Carmona, Seville, Spain). Int Biodeterior Biodegrad 40:233–239CrossRefGoogle Scholar
  5. Benavente D, del Garcia-Cura MA, Garcia-Guinea J, Sanchez-Moral S, Ordoñez S (2004) The role of pore structure in salt crystallisation in unsaturated porous stone. J Cryst Growth 260:532–544CrossRefGoogle Scholar
  6. Benavente D, Cueto N, Martinez-Martinez J, Garcia-del-Cura MA, Cañaveras JC (2007) The influence of petrophysical properties on the salt weathering of porous building rocks. Environ Geol 52:197–206CrossRefGoogle Scholar
  7. Benavente D, Brimblecombe P, Grossi CM (2008) Salt weathering and climate change. In Colombini MP, Tassi L (eds) New trends in analytical, environmental and cultural heritage chemistry, Transworld Research Network, Kerala, India, pp 277–286Google Scholar
  8. Benavente D, Cañaveras JC, Cuezva S, Laiz L, Sanchez-Moral S (2009) Experimental definition of microclimatic conditions based on water transfer and porous media properties for conservation of prehistoric constructions: Cueva Pintada at Galdar, Gran Canaria, Spain. Environ Geol 56:1495–1504CrossRefGoogle Scholar
  9. Bionda D (2006) Modelling indoor climate and salt behaviour in historical buildings: a case study. Dissertation, ETH Zurich. doi:10.3929/ethz-a-005188136
  10. Brimblecombe P, Grossi CM (2007) Damage to buildings from future climate and pollution. APT Bull 38:13–18Google Scholar
  11. Buck AL (1981) New equations for computing vapor pressure and enhancement factor. J Appl Meteorol Climatol 20:1527–1532CrossRefGoogle Scholar
  12. Cardell C, Benavente D, Rodriguez-Gordillo J (2008) Weathering of limestone building material by mixed sulfate solutions. Characterization of stone microstructure, reaction products and decay forms. Mater Charact 59:1371–1385CrossRefGoogle Scholar
  13. Charola AE, Pühringer J, Steiger M (2007) Gypsum: a review of its role in the deterioration of building materials. Environ Geol 52:207–220CrossRefGoogle Scholar
  14. Dreybrodt W, Gabrovsek F, Perne M (2005) Condensation corrosion: a theoretical approach. Acta Carsol 34:317–348Google Scholar
  15. Dublyansky VN, Dublyansky YV (2000) The role of condensation in karst hydrogeology and speleogenesis. In: Klimchouk A, Ford DC, Palmer A, Dreybrodt W (eds) Speleogenesis: evolution of karst aquifers. National Speleological Society, Florida, pp 100–111Google Scholar
  16. Espinosa-Marzal RM, Scherer GW (2008a) Study of the pore clogging induced by salt crystallization in Indiana limestone. In: Proceedings of the 11th international congress on deterioration and conservation of stone. Nicolaus Copernicus University Press, Torun, pp 81–88Google Scholar
  17. Espinosa-Marzal RM, Scherer GW (2008b) Study of sodium sulfate salts crystallization in limestone. Environ Geol 56:605–621CrossRefGoogle Scholar
  18. Espinosa-Marzal RM, Scherer GW (2010) Mechanisms of damage by salt crystallization. In: Smith BJ, Gomez-Heras M, Viles HA, Cassar J (eds) Limestone in the built environment: present-day challenges for the preservation of the past, vol 331. Special Publications, Geological Society of London, London, pp 61–77Google Scholar
  19. Everett DH (1961) Thermodynamics of frost damage to porous solids. Trans Faraday Soc 57:1541CrossRefGoogle Scholar
  20. Flatt RJ (2002) Salt damage in porous materials: how high supersaturations are generated. J Cryst Growth 242:435–454CrossRefGoogle Scholar
  21. Franzen C, Mirwald PW (2009) Moisture sorption behaviour of salt mixtures in porous stone. Chemie der Erde-Geochem 69:91–98CrossRefGoogle Scholar
  22. Gonzalez-Delgado JA, Civis J, Dabrio CJ, Goy JL, Ledesma S, Pais J, Sierro FJ, Zazo C (2004) Cuenca del Guadalquivir. In: Vera JA (ed) Geología de España. SGE-IGME, Madrid, pp 543–550Google Scholar
  23. Grossi CM, Brimblecombe P, Harris I (2007) Predicting long term freeze–thaw risks on Europe built heritage and archaeological sites in a changing climate. Sci Tot Environ 377:273–281CrossRefGoogle Scholar
  24. Grossi CM, Brimblecombe P, Menéndez B, Benavente D, Harris I, Déque M. Climatology of salt damage on stone buildings. Sci Total Environ (submitted)Google Scholar
  25. Heyrman J, Balcaen A, Rodriguez-Diaz M, Logan NA, Swings J, De Vos P (2003) Bacillus decolorationis sp. nov., isolated from biodeteriorated parts of the mural paintings at the Servilia tomb (Roman Necropolis of Carmona, Spain) and the Saint-Catherine Chapel (Castle Herberstein, Austria). Int J Syst Evol Microbiol 53:459–463CrossRefGoogle Scholar
  26. Hoyos M, Sanchez-Moral S, Sanz Rubio E, Cañaveras JC (1999) Causas y mecanismos de deterioro de los materiales pétreos del pavimento del conjunto arqueológico de Baelo Claudia, Cádiz/España. Mater Constr 49:5–18CrossRefGoogle Scholar
  27. Imperi F, Caneva G, Cancellieri L, Ricci MA, Sodo A, Visca P (2007) The bacterial aetiology of rosy discoloration of ancient wall paintings. Environ Microbiol 9:2894–2902CrossRefGoogle Scholar
  28. ISRM (1981) Rock characterisation. Testing and monitoring. ISRM suggested methods. In: Brown ET (ed) Commission on testing and monitoring. International Society for Rock Mechanics, Pergamon PressGoogle Scholar
  29. Kumar R, Kumar AV (1999) Biodeterioration of stone in tropical environments: an overview. Research in conservation. The Getty Conservation Institute, CaliforniaGoogle Scholar
  30. Laiz L, Miller AZ, Jurado V, Akatova E, Sanchez-Moral S, Gonzalez JM et al (2009) Isolation of five Rubrobacter strains from biodeteriorated monuments. Naturwissenschaften 96:71–79CrossRefGoogle Scholar
  31. Linnow K, Zeunert A, Steiger M (2006) Investigation of sodium sulfate phase transitions in a porous material using humidity- and temperature-controlled X-ray diffraction. Anal Chem 78:4683–4689CrossRefGoogle Scholar
  32. Martin JD (2004) Using X-powder: a software package for powder X-ray diffraction analysis, Version 2004.03. http://www.xpowder.com, p 105, Spain (L.GR1001/04.ISBN84-609-1497-6)
  33. Martínez-Martínez J (2008) Influencia de la alteración sobre las propiedades mecánicas de calizas, dolomías y mármoles. Evaluación mediante estimadores no destructivos (ultrasonidos). Dissertation, University of Alicante, SpainGoogle Scholar
  34. Martínez-Martínez J, Benavente D, del García-Cura MA (2007) Pérdida del pulido de diferentes mármoles comerciales en ambientes salinos. Macla 7:92Google Scholar
  35. Millero FJ, Milne PJ, Thurmond VL (1984) The solubility of calcite, strontianite and witherite in NaCl solutions at 25°C. Geochim Cosmochim Acta 48:1141–1143CrossRefGoogle Scholar
  36. Piñar G, Saiz-Jimenez C, Schabereiter-Gurtner C, Blanco-Varela MT, Lubitz W, Rölleke S (2001) Archaeal communities in two disparate deteriorated ancient wall paintings: detection, identification and temporal monitoring by DGGE. FEMS Microbiol Ecol 37:45–54Google Scholar
  37. Rodriguez-Navarro C, Doehne E (1999) Salt weathering: influence of evaporation rate, supersaturation and crystallization pattern. Earth Surf Process Landforms 24:191–209CrossRefGoogle Scholar
  38. Rodriguez-Navarro C, Doehne E, Sebastian E (2000) How does sodium sulfate crystallize? Implications for the decay and testing of building materials. Cem Concr Res 30:1527–1534CrossRefGoogle Scholar
  39. Ruiz-Agudo E, Putnis CV, Jimenez-Lopez C, Rodriguez-Navarro C (2009) An atomic force microscopy study of calcite dissolution in saline solutions: the role of magnesium ions. Geochim Cosmochim Acta 73:3201–3217CrossRefGoogle Scholar
  40. Sanchez-Moral S, Soler V, Canaveras JC, Sanz-Rubio E, Van Grieken R, Gysels K (1999) Inorganic deterioration affecting the Altamira Cave, N Spain: quantitative approach to wall-corrosion (solutional etching) processes induced by visitors. Sci Tot Environ 244:67–84CrossRefGoogle Scholar
  41. Schabereiter-Gurtner C, Piñar G, Vybiral D, Lubitz W, Rölleke S (2001) Rubrobacter-related bacteria associated with rosy discolouration of masonry and lime wall paintings. Arch Microbiol 176:347–354CrossRefGoogle Scholar
  42. Scherer GW (2004) Stress from crystallisation of salt. Cem Concr Res 34:1613–1624CrossRefGoogle Scholar
  43. Sebastian E, Cultrone G, Benavente D, Linares L, Elert K, Rodriguez-Navarro C (2008) Swelling damage in clay-rich sandstones used in the church of San Mateo in Tarifa (Spain). J Cult Herit 9:66–76CrossRefGoogle Scholar
  44. Šmerda J, Sedláček I, Páčová Z, Krejčí E, Havel L (2006) Paenibacillus sepulcri sp. nov., isolated from biodeteriorated mural paintings in the Servilia tomb. Int J Syst Evol Microbiol 56:2341–2344CrossRefGoogle Scholar
  45. Steiger M (2005) Crystal growth in porous materials—II: influence of crystal size on the crystallization pressure. J Cryst Growth 282:470–481CrossRefGoogle Scholar
  46. Zehnder K, Schoch O (2009) Efflorescence of mirabilite, epsomite and gypsum traced by automated monitoring on-site. J Cult Herit 10:319–330CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • D. Benavente
    • 1
  • S. Sanchez-Moral
    • 2
  • A. Fernandez-Cortes
    • 2
  • J. C. Cañaveras
    • 1
  • J. Elez
    • 3
  • C. Saiz-Jimenez
    • 4
  1. 1.Laboratorio de Petrología Aplicada, Departamento de Ciencias de la Tierra y del Medio AmbienteUniversidad de AlicanteAlicanteSpain
  2. 2.Departamento de GeologíaMuseo Nacional de Ciencias Naturales (CSIC)MadridSpain
  3. 3.Geomnia Natural Resources SLNECollado Villalba, MadridSpain
  4. 4.Instituto de Recursos Naturales y Agrobiología de Sevilla (CSIC)SevillaSpain

Personalised recommendations