Environmental Earth Sciences

, Volume 62, Issue 7, pp 1535–1549 | Cite as

Control of regional structural styles and faulting on Northeast Mexico spring distribution

Original Article

Abstract

Groundwater-dependent, spring-fed ecosystems of the Cuatrociénegas Basin, Coahuila, Mexico, host >70 endemic species. These desert springs occur primarily aligned along the base of an anticline that bisects the Cuatrociénegas Basin, but the hydrogeologic controls of the springs are poorly understood. The hypothesis that spring locations are controlled by subsurface geology, such as buried anticlines or faulting, versus stratigraphic controls is tested by evaluating: (1) regional structural styles; (2) fracture models of analogous structures; (3) hydrogeologic data; and (4) geophysical surveys. Jurassic and Cretaceous siliciclastic and carbonate rocks deposited on the Coahuila Block west of the Cuatrociénegas Basin have dips <10° and lack faults because of a structurally rigid granodiorite basement. To the east of the Coahuila Block and around the Cuatrociénegas Basin, the Coahuila Folded Belt has anticlines associated with basement-involved faults, 10–25° backlimb dips, and forelimb dips up to vertical or slightly overturned. Springs in the western sub-basin that represent 85% of total basin discharge are located on zones of highest anticipated fracture density predicted by fracture models of analogous anticlines. Spring waters reveal elevated temperature (32–35°C) and low tritium (<1 tritium unit). Gravimetry and time-domain electromagnetic surveys correspond with a best-fit Cuatrociénegas Basin hydrogeologic model of fractures associated with reverse faulting controlling spring locations in the western Cuatrociénegas Basin. Springs in the eastern sub-basin are located where ephemeral streams have eroded through confining beds along the base of alluvial fans and lack faulting. Regional variations in structural style are an important control on the location of springs in the Cuatrociénegas Basin.

Keywords

Geothermal waters and springs Carbonate hydrology Hydrogeology Mexico Karst Geophysics 

Supplementary material

12665_2010_639_MOESM1_ESM.tif (70.5 mb)
Online Fig. 1 Magnetic Anomaly Map of Mexico The map is adapted from the Magnetic Anomaly Map of North America (Bankey et al. 2002). The black box indicates the area around the Cuatrociénegas Basin, Mexico (102.5°W to 103.5°W and 26.5°N to 27.0°N). (TIFF 72220 kb). (TIFF 72220 kb)
12665_2010_639_MOESM2_ESM.docx (26 kb)
Supplementary material 2 (DOCX 25 kb)

References

  1. Adkins WS (1920) Cuatrociénegas, Coahuila — water resources, Walter Scott Adkins Collection, Center for American History. The University of Texas at Austin, Austin, Texas, p 19Google Scholar
  2. Bankey VA, Cuevas A, Daniels D, Finn CA, Hernandez I, Hill P, Kucks R, Miles W, Piulkington M, Roberts C, Roest W, Rystrom V, Shearer S, Snyder S, Sweeney R, Velez J (2002) A new magnetic anomaly map of North America. U.S. Geological Survey. http://crustal.usgs.gov/projects/namad/the_project.html
  3. Bushman M, McBride JH, Nelson ST, Mayo AL (2005) Preliminary results from a shallow, high-resolution seismic survey and potential field data filtering near Devil’s Hole at Ash Meadows, Nevada. Geological Society of America Abstract with Programs 37, p 373Google Scholar
  4. Chávez-Cabello G, Aranda-Gómez JJ, Molina-Garza RS, Cossío-Torres T, Arvizu-Gutiérres IR, González-Naranjo GA (2005) The San Marcos Fault: a northeast Mexico multireactivated Jurassic basement structure. Bull Mex Geol Soc 57(1):27–52Google Scholar
  5. Committee for the Gravity Anomaly Map of North America (1987) Gravity anomaly map of North America. Geological Society of America, BoulderGoogle Scholar
  6. Darling BK (1997) Delineation of the ground-water flow systems of the Eagle Flat and Red Light Basins of Trans-Pecos Texas. Dissertation, The University of Texas at AustinGoogle Scholar
  7. Darling BK, Hibbs BJ, Dutton AR (1994) Ground-water hydrology and hydrochemistry of Eagle Flat and surrounding area. The University of Texas at Austin, Bureau of Economic Geology contract report, prepared for the Texas Low-Level Radioactive Waste Disposal Authority under Interagency Contract IAC (92-93)-0910, p 137Google Scholar
  8. Eakin TE, Moore DO (1964) Uniformity of discharge of Muddy River springs, Southeastern Nevada, and relation to interbasin movement of ground water. U.S. Geological Survey Professional Paper 501-DGoogle Scholar
  9. Eguiluz de Antuñano S (2001) Geologic evolution and gas resources of the Sabinas Basin in Northeastern Mexico. In: Bartolini C, Buffler RT, Cantú-Chapa A (eds) AAPG Memoir 75. The western Gulf of Mexico Basin: tectonics, sedimentary basins, and petroleum systems. American Association of Petroleum Geologists, Tulsa, pp 241–270Google Scholar
  10. Erslev EA, Mayborn KR (1997) Multiple geometries and modes of fault-propagation folding in the Canadian thrust belt. J Struct Geol 19:321–335CrossRefGoogle Scholar
  11. Evans SB (2005) Using geochemical data to define flow systems in Cuatrociénegas, Coahuila, Mexico. Thesis, The University of Texas at AustinGoogle Scholar
  12. Fett J (1992) Instructional manual: Model G and D gravity meters. LaCoste and Romberg Gravity Meters, Inc, Austin, p 127Google Scholar
  13. Freeze RA, Witherspoon PA (1967) Theoretical analysis of regional groundwater flow. Part 2. Effect of water-table configuration and subsurface permeability variation. Water Resour Res 3:623–634CrossRefGoogle Scholar
  14. Geosoft Inc. (2001) Oasis Montaj 5.1.2 quick start tutorials. Geosoft Inc., Toronto, p 245Google Scholar
  15. Ghoddousi-Fard R, Dare P (2006) Online GPS processing services: an initial study. GPS Solut 10(1):12–20CrossRefGoogle Scholar
  16. Goldhammer RK (1999) Mesozoic sequence stratigraphy and paleogeographic evolution of northeast Mexico. Geological Society of America Special Paper 340, p 54Google Scholar
  17. Hall O, Falorni G, Bras RL (2005) Characterization and quantification of data voids in the Shuttle Radar Topography Mission data. Geosci Remote Sens Lett 2(2):177–181CrossRefGoogle Scholar
  18. Hendrickson DA, Marks JC, Moline AB, Dinger EC, Cohen AE (2008) Combining ecological research and conservation: a case study in Cuatro Ciénegas, Mexico. In: Stevens L, Meretsky VJ (eds) Every last drop: ecology and conservation of North American desert springs. University of Arizona Press, Tucson, pp 127–157Google Scholar
  19. Hennings PH, Olson JE, Thompson LB (2000) Combining outcrop data and three-dimensional structural models to characterize fractured reservoirs: an example from Wyoming. Am Assoc Petrol Geol Bull 84(6):830–849Google Scholar
  20. Hobba WA, Fisher DW, Pearson FJ, Chemerys JC (1979) Hydrology and geochemistry of thermal springs of the Appalacians. U.S. Geological Survey Professional Paper 1044-E, p 36Google Scholar
  21. Jamason P, Bock Y, Fang P, Gilmore B, Malveaux D, Prawirodirdjo L, Scharber M (2004) SOPAC web site (http://sopac.ucsd.edu). GPS solutions 8(4):272–277
  22. Jansen J, King MJ, Loughry J, Powell T, Laymon D (2004) An overview of Inyo County’s 2003 Death Valley California area geophysical program. In: Proceedings of the symposium on the application of geophysics to environmental and engineering problems SAGEEP 2004. Colorado Springs, Colorado, pp 981–991Google Scholar
  23. Laenen A (1985) Acoustic velocity meter systems. U.S. Geological Survey Techniques for Water-Resource Investigations, Book 3, Chapter A17, p 38Google Scholar
  24. Langenheim VE, Dewitt E, Wirt L (2005) Geophysical framework based on analysis of aeromagnetic and gravity data, Upper and Middle Verde River Watershed, Yavapai County, Arizona. U.S. Geological Survey Scientific Investigations Report 2005-5278, 25 ppGoogle Scholar
  25. Lehmann C, Osleger DA, Montanez IP, Sliter WV, Arnaud-Vanneau A, Banner JL (1999) Evolution of Cupido and Coahuila carbonate platforms, early Cretaceous, northeastern Mexico. Geol Soc Am Bull 111(7):1010–1029CrossRefGoogle Scholar
  26. Marrett R, Aranda-García M (2001) Regional structure of the Sierra Madre Oriental fold-thrust belt, Mexico. In: Marrett R (ed) Genesis and controls of reservoir-scale carbonate deformation, Monterrey Salient, Mexico, Bureau of Economic Geology, Guidebook 28. Bureau of Economic Geology, Austin, pp 31–56Google Scholar
  27. Marrett R, Bentham PA (1997) Geometric analysis of hybrid fault-propagation/detachment folds. J Struct Geol 19(3–4):243–248CrossRefGoogle Scholar
  28. McGrath R, Styles P, Thomas E, Neale S (2002) Integrated high-resolution geophysical investigations as potential tool for water resource investigations in karst terrain. Environ Geol 42(5):552–557CrossRefGoogle Scholar
  29. McKee JW, Jones NW, Long LE (1990) Stratigraphy and provenance of strata along the San Marcos fault, central Coahuila, Mexico. Geol Soc Am Bull 102:593–614CrossRefGoogle Scholar
  30. Miele MJ, Jansen J, Davila Arizpe JE, Magallanes Mercado MA (2000) A regional groundwater evaluation using magnetotelluric soundings for Monclova, Mexico. In: Proceedings of the symposium on the application of geophysics to environmental and engineering problems SAGEEP 2000. Arlington, Virginia, pp. 699–708Google Scholar
  31. Minckley WL (1969) Environments of the Bolson of Cuatrociénegas, Coahuila, Mexico, with special reference to the aquatic biota. Univ Texas El Paso Sci Ser 2:1–65Google Scholar
  32. Minckley WL (1992) Three decades near Cuatro Ciénegas, Mexico: photographic documentation and a plea for area conservation. J Arizona-Nevada Acad Sci 29:89–118Google Scholar
  33. Minckley WL, Cole GA (1968) Preliminary limnological information on waters of the Cuatrociénegas Basin, Coahuila, Mexico. Southwest Nat 13(4):421–431CrossRefGoogle Scholar
  34. Mitra S (2002) Structural models of faulted detachment folds. Am Assoc Petrol Geol Bull 86(9):1673–1694Google Scholar
  35. Mitra S, Mount VS (1998) Foreland basement-involved structures. Am Assoc Petrol Geol Bull 82(1):70–109Google Scholar
  36. Mochales T, Casas AM, Pueyo EL, Román MT, Pocoví A, Soriano MA, Ansón D (2008) Detection of underground cavities by combining gravity, magnetic and ground penetrating radar surveys: a case study from the Zaragoza area, NE Spain. Environ Geol 53(5):1067–1077CrossRefGoogle Scholar
  37. Nettleton LL (1971) Elementary gravity and magnetics for geologists and seismologists. Society of Exploration Geophysicists Geophysical Monograph Series 1. Society of Exploration Geophysicists, TulsaGoogle Scholar
  38. Peter G, Klopping FJ, Carter WE, Dewhurst WT (1991) Absolute gravity reference sites in the United States. Geophys Lead Edge Explor 10(7):43–45CrossRefGoogle Scholar
  39. Reynolds JM (1997) An introduction to applied and environmental geophysics. Wiley, ChichesterGoogle Scholar
  40. Rodríguez AAA, Mijares FJA, Ojeda CG, Morales MM, Hita LG, Zamarrón GH, Arellano IM, González MAM, Flores GO, Almanza PG, Sánchez RL, López JLP, Arzate GR, Fritz P, Espinoza JR (2005) Hydrogeologic study of the Hundido and Cuatrociénegas aquifers, Coahuila. National Water Commission, Mexico CityGoogle Scholar
  41. Rodríguez E, Morris CS, Belz JE (2006) A global assessment of the SRTM performance. Photogramm Eng Remote Sensing 72(3):249–260Google Scholar
  42. Servicio Geológico Mexicano (1998) Carta Geológica-Minera, Tanque Nuevo G13-B69, Coahuila. Secretaría de Economía, Servicio Geológico Mexicano, Pachuca, Hidalgo, MexicoGoogle Scholar
  43. Servicio Geológico Mexicano (2008) Carta Geológica-Minera, Cuatro Ciénegas G13-B59, Coahuila. Secretaría de Economía, Servicio Geológico Mexicano, Pachuca, Hidalgo, MexicoGoogle Scholar
  44. Silva JBC, Teixeira WA, Barbosa VCF (2009) Gravity as a tool for landfill study. Environ Geol 57(4):749–757CrossRefGoogle Scholar
  45. Solomon K, Cook PG (2000) 3H and 4He. In: Solomon K, Cook PG (eds) Environmental tracers in subsurface hydrology. Kluwer Academic Publishers, Dordrecht, pp 374–424Google Scholar
  46. Stierman DJ, Kovach RL (1979) An in situ velocity study: the Stone Canyon Well. J Geophys Res 84(B2):672–678CrossRefGoogle Scholar
  47. Talwani M, Worzel JL, Landisman M (1959) Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zone. J Geophys Res 64(1):49–59CrossRefGoogle Scholar
  48. Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics. Cambridge University Press, CambridgeGoogle Scholar
  49. Veni G (1997) Geomorphology, hydrogeology, geochemistry, and evolution of the karstic Lower Glen Rose Aquifer, south-central Texas. Dissertation, Pennsylvania State UniversityGoogle Scholar
  50. von Frese RRB, Hinze WJ, Braile LW, Luca AJ (1981) Spherical-earth gravity and magnetic anomaly modeling by Gauss-Legendre quadrature integration. J Geophys 49(3):234–242Google Scholar
  51. Winograd IJ, Pearson FJ Jr (1976) Major carbon-14 anomaly in a regional carbonate aquifer: possible evidence for megascale channeling, South Central Great Basin. Water Resour Res 12(6):1125–1143CrossRefGoogle Scholar
  52. Wolaver BD (2008) Hydrogeology of the Cuatrociénegas Basin, Coahuila, Mexico: an integrative approach to arid karst aquifer delineation. Dissertation, The University of Texas at AustinGoogle Scholar
  53. Wolaver BD, Sharp JM Jr (2007) Thermochron iButton: limitation of this inexpensive and small-diameter temperature logger. Ground Water Monit Remed (27):127–128Google Scholar
  54. Wolaver BD, Sharp JM Jr, Rodríguez JM, Ibarra Flores JC (2008) Delineation of regional arid karstic aquifers: an integrative data approach. Ground Water 46(3):396–413CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Earth Sciences, School of the EnvironmentFlinders UniversityAdelaideAustralia
  2. 2.National Oceanic and Atmospheric Administration, National Geodetic SurveySilver SpringUSA

Personalised recommendations