Advertisement

Environmental Earth Sciences

, Volume 62, Issue 1, pp 151–159 | Cite as

Gypsum and dolomite biomineralization in endoevaporitic microbial niche, EMISAL, Fayium, Egypt

  • Mohamed W. Ali-BikEmail author
  • Hussein I. M. Metwally
  • Mohamed G. Kamel
  • Ashraf M. A. Wali
Original Article

Abstract

Biogenic gypsum in the form of microbialite and potential domal stromatolite as well as endoevaporitic dolomite are deposited in a perennial saline basin characterized by microbial bloom. Deposition environment, mode of occurrence, and microscopic investigation including SEM of these precipitates are discussed in conjunction with XRD, XRF, and FTIR data. Combined effects of salinity gradient and the wind action on the maturity of gypsum outcrop are evident. A characteristic multi-color vertical gypsum profile reflects steep gradient of oxi-anoxic microenvironments and encodes diverse seasonal microbial communities. Direct impact of microbial signature in gypsum crystal habit is conspicuous. Endoevaporitic authigenic dolomite is recorded in specific horizons in interstices of selenite layers.

Keywords

Biomineralization Endoevaporitic Gypsum Dolomite Microbialite 

References

  1. Ali YA, El Sheikh RM (2004) Brine geochemistry of the southern coast of Lake Qaroun water and nearly saline and hypersaline solar ponds, Fayoum-Egypt. 6th Int Conf geochem, Alexandria Univ, 15–16 September, pp 71–90Google Scholar
  2. Ali YA, Dardir AA, El Sheikh RM (2007) Parameters affecting evaporites deposition in artificial saline and hypersaline ponds brines. 2nd Conf, NRC, pp 114Google Scholar
  3. Awramik SM (1984) Ancient stromatolite and microbial mats. In: Cohen Y, Castenholz RW, Halvoson HO (eds) Microbial mats: stromatolites. Alan R Liss, New York, pp 1–22Google Scholar
  4. Babel M (2005) Selenite-gypsum microbialite facies and sedimentary evolution of the Badenian evaporite basin of the northern Carpathian Foredeep. Acta Geol Pol 55(2):187–210Google Scholar
  5. Barbieri R, Stivaletta N, Marinangeli L, Ori GG (2006) Microbial signatures in sabkha evaporaite deposits of Chott el Gharsa (Tunisia) and their astrobiological implications. Planet Space Sci 54:726–736. doi: 10.1016/j.pss.2006.04.003 CrossRefGoogle Scholar
  6. Beveridge TJ (1981) Ultrstructure, chemistry and function of the bacterial cell walls. Int Review Cytol 72:229–317. doi: 10.1016/S0074-7696(08)61198-5 CrossRefGoogle Scholar
  7. Beveridge TJ, Fyfe WS (1985) Metal fixation by bacterial cell walls. Cand J Earth Sci 22:1893–1898Google Scholar
  8. Böke H, Akkurt S, özdemir S, Göktürk EH, Saltik ENC (2004) Quantification of CaCO3–CaSO3.5H2O–CaSO4.2H2O mixtures by FTIR analysis and its ANN model. Mat Lett 58:723–726CrossRefGoogle Scholar
  9. Burne RV, Moore LS (1987) Microbialite, organosedimentary deposits of benthic microbial communities. Palaios 2:241–254. doi: 10.2307/3514674 CrossRefGoogle Scholar
  10. Cody AM, Cody RD (1989) Evidence for micro-biological induction of [101] Montmartre twinning of gypsum (CaSO4.2H2O). J Crystal Growth 98:721–730. doi: 10.1016/0022-0248(89)90310-2 CrossRefGoogle Scholar
  11. Douglas S (2005) Mineralogical footprints of microbial life. Am J Sci 305:503–525. doi: 10.2475/ajs.305.6-8.503 CrossRefGoogle Scholar
  12. Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13(9):429–438Google Scholar
  13. Gerdes G (2007) Structures lift by modern microbial mats in their host sediments. In: Schieber J, Bose PK, Erikson PG, Banerjee S, Sarkar S, Altermann W, Catuneau O (eds) Atlas of microbial mat features preserved within the clastic rock record. Elsevier, Amsterdam, pp 5–38Google Scholar
  14. Gerdes G, Krumbein WE, Noffke N (2000) Evaporite microbial sediments. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin, pp 196–208Google Scholar
  15. Hardie LA (1987) Perspectives: dolomitization, a critical view of some current views. J Sed Petrl 57:166–183Google Scholar
  16. Hardie LA, Eugster HP (1971) The depositional environment of marine evaporites: a case for shallow, clastic accumulation. Sedimentology 16:187–220. doi: 10.1111/j.1365-3091.1971.tb00228.x CrossRefGoogle Scholar
  17. Her N, Amy G, Park HR, Song M (2004) Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling. Water Res 38:1427–1438. doi: 10.1016/j.watres.2003.12.008 CrossRefGoogle Scholar
  18. Hirschmugl CJ, Bayarri Zuheir–El, Bunta M, Holt JB, Giordano M (2006) Analysis of the nutritional status of algae by fourier transform infrared chemical imaging. Infrared Phys Technol 49:57–63CrossRefGoogle Scholar
  19. Jørgensen BB, Revsbech NP, Cohen Y (1983) Photosynthesis and structure of benthic microbial mats: microelectrode and SEM studies of four cyanobacterial communities. Limnol Oceanogr 28(6):1075–1093CrossRefGoogle Scholar
  20. Knoll AH, Golubic S (1992) Proterozoic and living stromatolites. In: Schidlowski M (ed) Early organic evolution: implications for mineral and energy resources. Springer, New York, pp 51–76Google Scholar
  21. Krumbein WE (1983) Stromatolites-the challenge of a term in space and time. Precambr Res 20(2–4):493–531. doi: 10.1016/0301-9268(83)90087-6 CrossRefGoogle Scholar
  22. Ludwig R (2004) Carbon cycling and calcification in hypersaline microbial mats. PhD dissertation, Biology/Chemistry, Bremen University, 157 ppGoogle Scholar
  23. Metwally HIM (2002) Mineralogical and chemical characteristics of the precipitates and brines from solar concentration ponds and its industrial applications, Lake Qarun, EMISAL (Case study). Ph.D thesis, Cairo University, 90 ppGoogle Scholar
  24. Noffke N, Gerdes G, Klenke T, Krumbein WE (2001) Microbially induced sedimentary structures: a new category within the classification of primary sedimentary structures. J Sed Res 71(5):649–656. doi: 10.1306/2DC4095D-0E47-11D7-8643000102C1865D CrossRefGoogle Scholar
  25. Noffke N, Gerdes G, Klenke T (2003) Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporitic salty, and evaporitic carbonatic). Earth Sci Rev 62:163–176. doi: 10.1016/S0012-8252(02)00158-7 CrossRefGoogle Scholar
  26. Ollivier B, Caumette P, Garcia JL, Mah RA (1994) Anaerobic bacteria from hypersaline environments. Microbiol Rev 58(1):27–38Google Scholar
  27. Paterson DM (1994) Microbiological mediation of sediment structure and behavior. In: Stal LJ, Caumette P (eds) Microbial mats. Springer, Berlin, pp 97–109Google Scholar
  28. PCPDFWIN software (2001): Copyright © JCPDS–ICDD, Version 2.2, June 2001Google Scholar
  29. Rothschild LJ, Giver LJ, White MR, Mancinelli RL (1994) Metabolic activity of microorganisms in evaporites. J Phycol 30(3):431–438CrossRefGoogle Scholar
  30. Sanz-Montero ME, Rodrigues-Aranda JP, Calvo JP (2005) Biomineralization in relation with endoevaporitic microbial communities. Miocene lake deposits of Madrid Basin, Central Spain. Geophysical Res Abstract, Vol 7, 06837. SRef-ID: 1607-7962/gra/EGU05-A-06837. European Geosciences UnionGoogle Scholar
  31. Schreiber BC (1978) Environments of subaqueous gypsum deposition. In: Dean WE, Schreiber BC (eds) Marine evaporites. SEPM short course, 4, Oklahoma City, pp 43–73Google Scholar
  32. Schreiber BC (1988) Subaqueous evaporite deposition. In: Schreiber BC (ed) Evaporites and hydrocarbons. Columbia Univ, New York, pp 182–255Google Scholar
  33. Stehfest K, Toepel J, Wilhelm C (2005) The application of micro–FTIR spectroscopy to analyze nutrient stress-related changes in biomass composition of phytoplankton algae. Plant physiol biochem 43:717–726CrossRefGoogle Scholar
  34. van Lith Y, Warthmann R, Vasconcelos C, McKenzie JA (2003) Sulphate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation. Geobiology 1:71–79CrossRefGoogle Scholar
  35. Vasconcelos C, Warthmann R, McKenzie JA, Visscher PT, Bittermann AG, van Lith Y (2006) Lithifying microbial mats in Lagoa Vermelha, Brazil: modern Precambrian relics? Sedimentary Geol 185:175–183CrossRefGoogle Scholar
  36. Wali AMA, Galmed MA (2001) Origin and significance of gypolite. 5th Inter Conf geochem, Alex Univ, Egypt, 12–13 Sept, pp 25–43Google Scholar
  37. Wright DT, Oren A (2005) Nonphotosynthetic bacteria and the formation of carbonates and evaporites through time. Geomicrobiol J 22(1 and 2):27–53CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Mohamed W. Ali-Bik
    • 1
    Email author
  • Hussein I. M. Metwally
    • 1
  • Mohamed G. Kamel
    • 2
  • Ashraf M. A. Wali
    • 3
  1. 1.Geological Sciences DepartmentNational Research CentreCairoEgypt
  2. 2.Academy of Scientific Research and TechnologyCairoEgypt
  3. 3.Geology Deparment, Faculty of ScienceCairo UniversityCairoEgypt

Personalised recommendations