Environmental Earth Sciences

, Volume 62, Issue 1, pp 77–91 | Cite as

Geochemical processes in the saltwater–freshwater transition zone: comparing results of a sand tank experiment with field data

  • B. PanteleitEmail author
  • K. Hamer
  • R. Kringel
  • W. Kessels
  • H. D. Schulz
Original Article


Geochemical processes, occurring in a stable transition zone between saltwater and freshwater, were simulated in a 2D, multi-layer flow chamber experiment. Mixing, calcite dissolution, and oxidative degradation of organic matter were identified as the main controlling factors. The results of the chamber experiment were compared to field data and verified by thermodynamic modeling. Similarity in most ion distributions suggests the general applicability of the experimental method. Differences in the redox conditions between field and experiment were reflected by the oxidants involved in the mineralization of organic carbon; while field data show evidence of sulfate reduction, the presence of oxygen in the laboratory experiment resulted in the reoxidation of sulfides.


Hydrochemical modeling Saltwater intrusion German North Sea coast Tank experiment 



Antje Weitz is thanked for discussion, debates and helpful reviews which improved the paper and ideas. Toni Wienrich, Yvonne Habenicht, Jens Berger and Markus Helms are thanked for their aid in constructing, sampling and analyzing the flow chamber.


  1. Andersen MS, Nyvang V, Jakobsen R, Postma D (2005) Geochemical processes and solute transport at the seawater/freshwater interface of a sandy aquifer. Geochim Cosmochim Acta 69:3979–3994. doi: 10.1016/j.gca.2005.03.017 CrossRefGoogle Scholar
  2. Appelo CAJ, Greinaert W (1991) Processes accompanying the intrusion of salt water. In: Breuck WD (ed) Hydrogeology of salt water intrusion—a selection of SWIM papers. Heise, Hannover, pp 291–303Google Scholar
  3. Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. AA Balkema, Leiden, p 649Google Scholar
  4. Atkins P (1990) Pysikalische Chemie (Physical chemistry). VCH, WeinheimGoogle Scholar
  5. Beekman HE, Appelo CAJ (1991) Ion chromatography of fresh- and salt-water displacement: laboratory experiments and multicomponent transport modelling. J Contam Hydrol 7:21–37. doi: 10.1016/0169-7722(91)90036-Z CrossRefGoogle Scholar
  6. Berner RA (1975) The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geochimica Cosmochimica Acta 39:489–504. doi: 10.1016/0016-7037(75)90102-7 CrossRefGoogle Scholar
  7. Berner RA, Westrich JT, Graber R, Smith J, Martens CS (1978) Inhibition of aragonite precipitation from supersaturated seawater: a laboratory and field study. Am J Sci 278:816–837CrossRefGoogle Scholar
  8. Binot F, Druivenga G, Eckard H, Fulda C, Große K, Grossmann E, Höltscher F, Kantor W, Kessels W, Neuß M, Panteleit B, Rifai H, Suckow A, and Wonik T (2002) Forschungsbohrung Cuxhaven Lüdingworth 1 und 1A CAT-LUD 1 und CAT-LUD 1A—Ergebnisse (Results from te research drillings Cuxhaven Lüdingworth), Report of the Leibnitz Institute for Applied Geosciences 121520Google Scholar
  9. Bowen HJM (1979) Environmental chemistry of the elements. Academic Press, New YorkGoogle Scholar
  10. Bridge ME, Lloyd DR (2005) Is there a significant diffusive “salt-pump mechanism” for the transport of organic contaminants from the marine environment into fresh water aquifers? Environ Geol 49:207–213. doi: 10.1007/s00254-005-0048-5 CrossRefGoogle Scholar
  11. Cook JM, Miles DL (1980) Methods for the chemical analysis of groundwater. Hydrogeology Unit, Institute of Geological Sciences, LondonGoogle Scholar
  12. Custodio E, Bruggeman GA (1987) Groundwater problems in coastal areas. UNESCOGoogle Scholar
  13. Dai Z, Samper J (2006) Inverse modeling of water flow and multicomponent reactive transport in coastal aquifer systems. J Hydrol 327:447–461. doi: 10.1016/j.jhydrol.2005.11.052 CrossRefGoogle Scholar
  14. Dellwig O, Watermann F, Brumsack H-J, Gerdes G (1999) High-resolution reconstruction of a Holocene coastal sequence (NW Germany) using inorganic geochemical data and diatom inventories. Estuar Coast Shelf Sci 48:617–633. doi: 10.1006/ecss.1998.0462 CrossRefGoogle Scholar
  15. Dellwig O, Watermann F, Brumsack H-J, Gerdes G, Krumbein WE (2001) Sulphur and iron geochemistry of Holocene coastal peats (NW Germany): a tool for palaeoenvironmental reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 167:359–379. doi: 10.1016/S0031-0182(00)00247-9 CrossRefGoogle Scholar
  16. Djabri L, Rouabia A, Hani A, Lamaouroux C, Polidou-Bosch A (2007) Origin of water salinity in a lake and coastal aquifer sytem. Environ Geol. doi: 10.1007/s00254-007-0851-2
  17. Domenico PA, Schwartz FW (1998) Physical and Chemical Hydrogeology, 2nd edn. Wiley, New York, 506 ppGoogle Scholar
  18. Foyle AM, Henry VJ, Alexander CR (2002) Mapping the threat of seawater intrusion in a regional coastal aquifer aquitard system in the southeastern United States. Environ Geol 43:151–159. doi: 10.1007/s00254-002-0636-6 CrossRefGoogle Scholar
  19. Froelich PN, Klinkhammer GP, Bender ML, Luedtke ML, Heath GR, Cullen D, Dauphin P, Hammond D, Hartmann B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090. doi: 10.1016/0016-7037(79)90095-4 CrossRefGoogle Scholar
  20. Fulda C (2002) Numerische Studie zur Salz-/Süßwasserverteilung im Rahmen der Cuxhavener Forschungsbohrung (Numeric study of the salt-/freshwater distribution at the research well Cuxhaven). Mitteilungen der Deutschen Geophysikalischen Gesellschaft Sonderband, vol II, pp 10–26Google Scholar
  21. Giblin AE, Howarth RW (1984) Porewater evidence for a dynamic sedimentary iron cycle in salt marshes. Limnol Oceanogr 29:47–63CrossRefGoogle Scholar
  22. Gomis-Yagües V, Boluda-Botella N, Ruiz-Beviá F (2000) Gypsum precipitation/dissolution as an explanation of the decrease of sulphate concentration during seawater intrusion. J Hydrol 228:48–55. doi: 10.1016/S0022-1694(99)00207-3 CrossRefGoogle Scholar
  23. Grasshoff K, Ehrhardt M, Kremling K (1999) Methods of seawater analysis. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  24. Jørgensen BB (1982) Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. Phil Trans R Soc Lond B 298:543–561. doi: 10.1098/rstb.1982.0096
  25. Jørgensen BB (2000) Bacteria and marine biogeochemistry. In: Schulz HD, Zabel M (eds) Marine geochemistry. Springer, Berlin, pp 173–208Google Scholar
  26. Kasten S, Jørgensen BB (2000) Sulfate reduction in marine sediments. In: Schulz HD, Zabel M (eds) Marine geochemistry. Springer, Berlin, pp 263–282Google Scholar
  27. Kessels W, Dörhöfer G, Fritz J, Fulda C (2000) Das Forschungsprojekt “Bremerhaven-Cuxhavener Rinne” zur Beurteilung von Grundwasservorkommen in Rinnensystemen (The research projekt “Bremerhaven-Cuxhavener Rinne” to evaluate the groundwater sources in buried valleys). Arbeitshefte Wasser 2000(1):189–203Google Scholar
  28. Kim Y, Lee K-S, Koh D-C, Lee D-H, Lee S-G, Park W-B, Koh G-W, Woo M-C (2003) Hydrogeochemical and isotopic evidence of groundwater salinization in a coastal aquifer: a case study in Jeju volcanic island, Korea. J Hydrol 270:282–294. doi: 10.1016/S0022-1694(02)00307-4 CrossRefGoogle Scholar
  29. Kirsch R, Rumpel H-M, Scheer W, Wiederhold H (eds) (2006) Groundwater resources in buried valleys—a challenge for geosciences. LIAG, Hannover, 305 ppGoogle Scholar
  30. Lowson RT (1982) Aqueous oxidation of pyrite by molecular oxygen. Chem Rev 82:461–497. doi: 10.1021/cr00051a001 CrossRefGoogle Scholar
  31. Magaritz M, Luzier JE (1985) Water-rock interactions and seawater-freshwater mixing effects in the coastal dunes aquifer, Coos Bay, Oregon. Geochim Cosmochim Acta 49:2515–2525. doi: 10.1016/0016-7037(85)90119-X CrossRefGoogle Scholar
  32. Magaritz M, Goldenberg L, Kafri U, Arad A (1980) Dolomite formation in the seawater-freshwater interface. Nature 287:622–624CrossRefGoogle Scholar
  33. Mao X, Prommer H, Barry DA, Langevin CD, Panteleit B, Li L (2006a) Three-dimensional model for multi-component reactive transport with variable density groundwater flow. Environ Model Softw 21:615–628. doi: 10.1016/j.envsoft.2004.11.008 CrossRefGoogle Scholar
  34. Mao X, Enot P, Barry DA, Li L, Binley A, Jeng D-S (2006b) Tidal influence on behaviour of a coastal aquifer adjacent to a low-relief estuary. J Hydrol 327:110–127. doi: 10.1016/j.jhydrol.2005.11.030 CrossRefGoogle Scholar
  35. Martinez ME, Bocanegra EM (2002) Hydrochemistry and cation-exchange processes in the coastal aquifer of Mar Del Plata, Argentinia. Hydrogeol J 10:393–408. doi: 10.1007/s10040-002-0195-7 CrossRefGoogle Scholar
  36. Mercado A (1985) The use of hydrogeochemical patterns in carbonate sand and sandstone aquifers to identify intrusion and flushing of saline water. Ground Water 23:635–645. doi: 10.1111/j.1745-6584.1985.tb01512.x CrossRefGoogle Scholar
  37. Morse JW, Millero FJ, Cornwell JC, Rickard D (1987) The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters. Earth Sci Rev 24:1–42. doi: 10.1016/0012-8252(87)90046-8 CrossRefGoogle Scholar
  38. Nadler A, Magaritz M, Mazor E (1980) Chemical reactions of seawater with rocks and freshwater: experimental and field observation on brackish waters in Israel. Geochim Cosmochim Acta 44:879–886. doi: 10.1016/0016-7037(80)90268-9 CrossRefGoogle Scholar
  39. Panteleit B, Hammerich T (2005) Hydrochemische Charakteristiken und Prozesse im Küstenbereich bei Cuxhaven (Hydrochemical characteristics and processes at the coastal zone near Cuxhaven/Germany). Z Angew Geol 51:58–64Google Scholar
  40. Panteleit B, Binot F, Kessels W, Schulz HD, Kantor W (2001a) Geological and geochemical characteristics of a salinization-zone in a coastal aquifer. In: Seiler K-P, Wohnlich S (eds) New approaches characterising groundwater flow, vol 2. AA Balkema, Leiden, pp 1237–1241Google Scholar
  41. Panteleit B, Kessels W, Kantor W, Schulz HD (2001b) Geochemical characteristics of salinization-zones in the coastal aquifer test field (CAT-Field) in North Germany. Paper presented at the SWICA-M3 saltwater intrusion and coastal aquifers conference, EssaouiraGoogle Scholar
  42. Panteleit B, Schulz HD, Kessels W (2002) Geochemical processes in the salt-freshwater transition zone—preliminary results of a sand tank experiment. Paper presented at the 17th salt water intrusion meeting, Delft, 6–10 May 2002Google Scholar
  43. Panteleit B, Kessels W, Schulz HD (2003) Geochemical processes in the salt-freshwater transition zone—exchanger reactions in a 2D-sand-tank experiment. In: Hadeler A, Schulz HD (eds) Geochemical Processes in soil and groundwater—measurement–modeling–upscaling. Wiley VCH, Weinheim, pp 596–610Google Scholar
  44. Panteleit B, Binot F, Kessels W (2006) Mud tracer test during soft rock drilling. Water Resour Res 42:W11415. doi: 10.1029/2005WR004487
  45. Parkhurst DL, Appelo CAJ (1999) PHREEQC for Windows—a hydrogeochemical transport model. USGS, DenverGoogle Scholar
  46. Reddy MM (1977) Crystallisation of calcium carbonate in the presence of trace concentrations of phosphorous containing anions. J Cryst Growth 41:287–295. doi: 10.1016/0022-0248(77)90057-4 CrossRefGoogle Scholar
  47. Robertson WD, Cherry JA, Schiff SL (1989) Atmospheric sulfur deposition 1950–1985 inferred from sulfate in groundwater. Water Resour Res 25:1111–1123. doi: 10.1029/WR025i006p01111 CrossRefGoogle Scholar
  48. Sanford WE, Konikow LF (1989) Simulation of calcite dissolution and porosity changes in saltwater mixing zones in coastal aquifers. Water Resour Res 25:655–667. doi: 10.1029/WR025i004p00655 CrossRefGoogle Scholar
  49. Schulz HD, Dahmke A, Schinzel U, Wallmann K, Zabel M (1994) Early diagenetic processes, fluxes, and reaction rates in sediments of the South Atlantic. Geochim Cosmochim Acta 58:2041–2060. doi: 10.1016/0016-7037(94)90284-4 CrossRefGoogle Scholar
  50. Tomson MB (1983) Effect of precipitation inhibitors on calcium carbonate scale formation. J Cryst Growth 62:106–112. doi: 10.1016/0022-0248(83)90013-1 CrossRefGoogle Scholar
  51. Vandenbohede A, Lebbe L (2002) Numerical modelling and hydrochemical characterisation of a fresh-water lens in the Belgian coastal plain. Hydrogeol J 10:576–586. doi: 10.1007/s10040-002-0209-5 CrossRefGoogle Scholar
  52. Walraevens K, Cardenal-Escarcena J, Van Camp M (2007) Reaction transport modelling of a freshening aquifer (Tertiary Ledo-Paniselian Aquifer, Flanders-Belgium). Appl Geochem 22:289–305. doi: 10.1016/j.apgeochem.2006.09.006 CrossRefGoogle Scholar
  53. Walter LM, Hanor JS (1979) Effect of orthophosphate on the dissolution kinetics of biogenic magnesian calcites. Geochim Cosmochim Acta 43:1377–1385. doi: 10.1016/0016-7037(79)90128-5 CrossRefGoogle Scholar
  54. Ward WC, Halley RB (1985) Dolomitization in a mixing zone of near-seawater composition, late Pleistocene, northeastern Yucatan Peninsula. J Sediment Petrol 55(3):407–420Google Scholar
  55. Werner AD, Gallagher MR (2006) Characterisation of seawater-intrusion in the Pioneer Valley, Australia, using hydrochemistry and three-dimensional numerical modelling. Hydrogeol J 14:1452–1469. doi: 10.1007/s10040-006-0059-7 CrossRefGoogle Scholar
  56. Wiederhold H, Binot F, Kessels W (2005) Die Forschungsbohrung Cuxhaven und das Coastal Aquifer Testfield (CAT-Field)—ein Testfeld für angewandte geowissenschaftliche Forschung (The Cuxhaven research borehole and the coastal aquifer test field (CAT-Field)—a test field for applied geoscientific research. Z Angew Geol 51:3–7Google Scholar
  57. Zilberbrand M, Rosenthal E, Shachnai E (2001) Impact of urbanization on hydrochemical evolution of groundwater and on unsaturated-zone gas composition in the coastal city of Tel Aviv, Israel. J Contam Hydrol 50:175–208CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • B. Panteleit
    • 1
    Email author
  • K. Hamer
    • 2
  • R. Kringel
    • 3
  • W. Kessels
    • 4
  • H. D. Schulz
    • 2
  1. 1.Geological Survey of BremenBremenGermany
  2. 2.Department of GeosciencesUniversity of BremenBremenGermany
  3. 3.Federal Institute for Geosciences and Natural ResourcesHannoverGermany
  4. 4.Leibnitz Institute for Applied GeosciencesHannoverGermany

Personalised recommendations